|
const Allocator = @import("std").mem.Allocator;
const assert = @import("std").debug.assert;
const copyForwards = @import("std").mem.copyForwards;
const RingBuffer = @This();
data: []u8,
read_index: usize,
write_index: usize,
|
Error |
pub const Error = error{ Full, ReadLengthInvalid };
|
init() Allocate a new |
pub fn init(allocator: Allocator, capacity: usize) Allocator.Error!RingBuffer {
const bytes = try allocator.alloc(u8, capacity);
return RingBuffer{
.data = bytes,
.write_index = 0,
.read_index = 0,
};
}
|
deinit() Free the data backing a |
pub fn deinit(self: *RingBuffer, allocator: Allocator) void {
allocator.free(self.data);
self.* = undefined;
}
|
mask() Returns |
pub fn mask(self: RingBuffer, index: usize) usize {
return index % self.data.len;
}
|
mask2() Returns |
pub fn mask2(self: RingBuffer, index: usize) usize {
return index % (2 * self.data.len);
}
|
write() Write |
pub fn write(self: *RingBuffer, byte: u8) Error!void {
if (self.isFull()) return error.Full;
self.writeAssumeCapacity(byte);
}
|
writeAssumeCapacity() Write |
pub fn writeAssumeCapacity(self: *RingBuffer, byte: u8) void {
self.data[self.mask(self.write_index)] = byte;
self.write_index = self.mask2(self.write_index + 1);
}
|
writeSlice() Write |
pub fn writeSlice(self: *RingBuffer, bytes: []const u8) Error!void {
if (self.len() + bytes.len > self.data.len) return error.Full;
self.writeSliceAssumeCapacity(bytes);
}
|
writeSliceAssumeCapacity() Write |
pub fn writeSliceAssumeCapacity(self: *RingBuffer, bytes: []const u8) void {
const data_start = self.mask(self.write_index);
const part1_data_end = @min(data_start + bytes.len, self.data.len);
const part1_len = part1_data_end - data_start;
@memcpy(self.data[data_start..part1_data_end], bytes[0..part1_len]);
const remaining = bytes.len - part1_len;
const to_write = @min(remaining, remaining % self.data.len + self.data.len);
const part2_bytes_start = bytes.len - to_write;
const part2_bytes_end = @min(part2_bytes_start + self.data.len, bytes.len);
const part2_len = part2_bytes_end - part2_bytes_start;
@memcpy(self.data[0..part2_len], bytes[part2_bytes_start..part2_bytes_end]);
if (part2_bytes_end != bytes.len) {
const part3_len = bytes.len - part2_bytes_end;
@memcpy(self.data[0..part3_len], bytes[part2_bytes_end..bytes.len]);
}
self.write_index = self.mask2(self.write_index + bytes.len);
}
|
writeSliceForwards() Write |
pub fn writeSliceForwards(self: *RingBuffer, bytes: []const u8) Error!void {
if (self.len() + bytes.len > self.data.len) return error.Full;
self.writeSliceForwardsAssumeCapacity(bytes);
}
|
writeSliceForwardsAssumeCapacity() Write |
pub fn writeSliceForwardsAssumeCapacity(self: *RingBuffer, bytes: []const u8) void {
const data_start = self.mask(self.write_index);
const part1_data_end = @min(data_start + bytes.len, self.data.len);
const part1_len = part1_data_end - data_start;
copyForwards(u8, self.data[data_start..], bytes[0..part1_len]);
const remaining = bytes.len - part1_len;
const to_write = @min(remaining, remaining % self.data.len + self.data.len);
const part2_bytes_start = bytes.len - to_write;
const part2_bytes_end = @min(part2_bytes_start + self.data.len, bytes.len);
copyForwards(u8, self.data[0..], bytes[part2_bytes_start..part2_bytes_end]);
if (part2_bytes_end != bytes.len)
copyForwards(u8, self.data[0..], bytes[part2_bytes_end..bytes.len]);
self.write_index = self.mask2(self.write_index + bytes.len);
}
|
read() Consume a byte from the ring buffer and return it. Returns |
pub fn read(self: *RingBuffer) ?u8 {
if (self.isEmpty()) return null;
return self.readAssumeLength();
}
|
readAssumeLength()Consume a byte from the ring buffer and return it; asserts that the buffer is not empty. |
pub fn readAssumeLength(self: *RingBuffer) u8 {
assert(!self.isEmpty());
const byte = self.data[self.mask(self.read_index)];
self.read_index = self.mask2(self.read_index + 1);
return byte;
}
|
readFirst() Reads first |
pub fn readFirst(self: *RingBuffer, dest: []u8, length: usize) Error!void {
if (length > self.len() or length > dest.len) return error.ReadLengthInvalid;
self.readFirstAssumeLength(dest, length);
}
|
readFirstAssumeLength() Reads first |
pub fn readFirstAssumeLength(self: *RingBuffer, dest: []u8, length: usize) void {
assert(length <= self.len() and length <= dest.len);
const data_start = self.mask(self.read_index);
const part1_data_end = @min(self.data.len, data_start + length);
const part1_len = part1_data_end - data_start;
const part2_len = length - part1_len;
@memcpy(dest[0..part1_len], self.data[data_start..part1_data_end]);
@memcpy(dest[part1_len..length], self.data[0..part2_len]);
self.read_index = self.mask2(self.read_index + length);
}
|
readLast() Reads last |
pub fn readLast(self: *RingBuffer, dest: []u8, length: usize) Error!void {
if (length > self.len() or length > dest.len) return error.ReadLengthInvalid;
self.readLastAssumeLength(dest, length);
}
|
readLastAssumeLength() Reads last |
pub fn readLastAssumeLength(self: *RingBuffer, dest: []u8, length: usize) void {
assert(length <= self.len() and length <= dest.len);
const data_start = self.mask(self.write_index + self.data.len - length);
const part1_data_end = @min(self.data.len, data_start + length);
const part1_len = part1_data_end - data_start;
const part2_len = length - part1_len;
@memcpy(dest[0..part1_len], self.data[data_start..part1_data_end]);
@memcpy(dest[part1_len..length], self.data[0..part2_len]);
self.write_index = if (self.write_index >= self.data_len) self.write_index - length else data_start;
}
|
isEmpty() Returns |
pub fn isEmpty(self: RingBuffer) bool {
return self.write_index == self.read_index;
}
|
isFull() Returns |
pub fn isFull(self: RingBuffer) bool {
return self.mask2(self.write_index + self.data.len) == self.read_index;
}
|
len()Returns the length |
pub fn len(self: RingBuffer) usize {
const wrap_offset = 2 * self.data.len * @intFromBool(self.write_index < self.read_index);
const adjusted_write_index = self.write_index + wrap_offset;
return adjusted_write_index - self.read_index;
}
|
Slice A |
pub const Slice = struct {
first: []u8,
second: []u8,
};
|
sliceAt() Returns a |
pub fn sliceAt(self: RingBuffer, start_unmasked: usize, length: usize) Slice {
assert(length <= self.data.len);
const slice1_start = self.mask(start_unmasked);
const slice1_end = @min(self.data.len, slice1_start + length);
const slice1 = self.data[slice1_start..slice1_end];
const slice2 = self.data[0 .. length - slice1.len];
return Slice{
.first = slice1,
.second = slice2,
};
}
|
sliceLast() Returns a |
pub fn sliceLast(self: RingBuffer, length: usize) Slice {
return self.sliceAt(self.write_index + self.data.len - length, length);
}
|
| Generated by zstd-browse2 on 2023-11-04 14:12:35 -0400. |