|
const Allocator = @import("std").mem.Allocator; const assert = @import("std").debug.assert; const copyForwards = @import("std").mem.copyForwards; const RingBuffer = @This(); data: []u8, read_index: usize, write_index: usize, |
Error |
pub const Error = error{ Full, ReadLengthInvalid }; |
init() Allocate a new |
pub fn init(allocator: Allocator, capacity: usize) Allocator.Error!RingBuffer { const bytes = try allocator.alloc(u8, capacity); return RingBuffer{ .data = bytes, .write_index = 0, .read_index = 0, }; } |
deinit() Free the data backing a |
pub fn deinit(self: *RingBuffer, allocator: Allocator) void { allocator.free(self.data); self.* = undefined; } |
mask() Returns |
pub fn mask(self: RingBuffer, index: usize) usize { return index % self.data.len; } |
mask2() Returns |
pub fn mask2(self: RingBuffer, index: usize) usize { return index % (2 * self.data.len); } |
write() Write |
pub fn write(self: *RingBuffer, byte: u8) Error!void { if (self.isFull()) return error.Full; self.writeAssumeCapacity(byte); } |
writeAssumeCapacity() Write |
pub fn writeAssumeCapacity(self: *RingBuffer, byte: u8) void { self.data[self.mask(self.write_index)] = byte; self.write_index = self.mask2(self.write_index + 1); } |
writeSlice() Write |
pub fn writeSlice(self: *RingBuffer, bytes: []const u8) Error!void { if (self.len() + bytes.len > self.data.len) return error.Full; self.writeSliceAssumeCapacity(bytes); } |
writeSliceAssumeCapacity() Write |
pub fn writeSliceAssumeCapacity(self: *RingBuffer, bytes: []const u8) void { const data_start = self.mask(self.write_index); const part1_data_end = @min(data_start + bytes.len, self.data.len); const part1_len = part1_data_end - data_start; @memcpy(self.data[data_start..part1_data_end], bytes[0..part1_len]); const remaining = bytes.len - part1_len; const to_write = @min(remaining, remaining % self.data.len + self.data.len); const part2_bytes_start = bytes.len - to_write; const part2_bytes_end = @min(part2_bytes_start + self.data.len, bytes.len); const part2_len = part2_bytes_end - part2_bytes_start; @memcpy(self.data[0..part2_len], bytes[part2_bytes_start..part2_bytes_end]); if (part2_bytes_end != bytes.len) { const part3_len = bytes.len - part2_bytes_end; @memcpy(self.data[0..part3_len], bytes[part2_bytes_end..bytes.len]); } self.write_index = self.mask2(self.write_index + bytes.len); } |
writeSliceForwards() Write |
pub fn writeSliceForwards(self: *RingBuffer, bytes: []const u8) Error!void { if (self.len() + bytes.len > self.data.len) return error.Full; self.writeSliceForwardsAssumeCapacity(bytes); } |
writeSliceForwardsAssumeCapacity() Write |
pub fn writeSliceForwardsAssumeCapacity(self: *RingBuffer, bytes: []const u8) void { const data_start = self.mask(self.write_index); const part1_data_end = @min(data_start + bytes.len, self.data.len); const part1_len = part1_data_end - data_start; copyForwards(u8, self.data[data_start..], bytes[0..part1_len]); const remaining = bytes.len - part1_len; const to_write = @min(remaining, remaining % self.data.len + self.data.len); const part2_bytes_start = bytes.len - to_write; const part2_bytes_end = @min(part2_bytes_start + self.data.len, bytes.len); copyForwards(u8, self.data[0..], bytes[part2_bytes_start..part2_bytes_end]); if (part2_bytes_end != bytes.len) copyForwards(u8, self.data[0..], bytes[part2_bytes_end..bytes.len]); self.write_index = self.mask2(self.write_index + bytes.len); } |
read() Consume a byte from the ring buffer and return it. Returns |
pub fn read(self: *RingBuffer) ?u8 { if (self.isEmpty()) return null; return self.readAssumeLength(); } |
readAssumeLength()Consume a byte from the ring buffer and return it; asserts that the buffer is not empty. |
pub fn readAssumeLength(self: *RingBuffer) u8 { assert(!self.isEmpty()); const byte = self.data[self.mask(self.read_index)]; self.read_index = self.mask2(self.read_index + 1); return byte; } |
readFirst() Reads first |
pub fn readFirst(self: *RingBuffer, dest: []u8, length: usize) Error!void { if (length > self.len() or length > dest.len) return error.ReadLengthInvalid; self.readFirstAssumeLength(dest, length); } |
readFirstAssumeLength() Reads first |
pub fn readFirstAssumeLength(self: *RingBuffer, dest: []u8, length: usize) void { assert(length <= self.len() and length <= dest.len); const data_start = self.mask(self.read_index); const part1_data_end = @min(self.data.len, data_start + length); const part1_len = part1_data_end - data_start; const part2_len = length - part1_len; @memcpy(dest[0..part1_len], self.data[data_start..part1_data_end]); @memcpy(dest[part1_len..length], self.data[0..part2_len]); self.read_index = self.mask2(self.read_index + length); } |
readLast() Reads last |
pub fn readLast(self: *RingBuffer, dest: []u8, length: usize) Error!void { if (length > self.len() or length > dest.len) return error.ReadLengthInvalid; self.readLastAssumeLength(dest, length); } |
readLastAssumeLength() Reads last |
pub fn readLastAssumeLength(self: *RingBuffer, dest: []u8, length: usize) void { assert(length <= self.len() and length <= dest.len); const data_start = self.mask(self.write_index + self.data.len - length); const part1_data_end = @min(self.data.len, data_start + length); const part1_len = part1_data_end - data_start; const part2_len = length - part1_len; @memcpy(dest[0..part1_len], self.data[data_start..part1_data_end]); @memcpy(dest[part1_len..length], self.data[0..part2_len]); self.write_index = if (self.write_index >= self.data_len) self.write_index - length else data_start; } |
isEmpty() Returns |
pub fn isEmpty(self: RingBuffer) bool { return self.write_index == self.read_index; } |
isFull() Returns |
pub fn isFull(self: RingBuffer) bool { return self.mask2(self.write_index + self.data.len) == self.read_index; } |
len()Returns the length |
pub fn len(self: RingBuffer) usize { const wrap_offset = 2 * self.data.len * @intFromBool(self.write_index < self.read_index); const adjusted_write_index = self.write_index + wrap_offset; return adjusted_write_index - self.read_index; } |
Slice A |
pub const Slice = struct { first: []u8, second: []u8, }; |
sliceAt() Returns a |
pub fn sliceAt(self: RingBuffer, start_unmasked: usize, length: usize) Slice { assert(length <= self.data.len); const slice1_start = self.mask(start_unmasked); const slice1_end = @min(self.data.len, slice1_start + length); const slice1 = self.data[slice1_start..slice1_end]; const slice2 = self.data[0 .. length - slice1.len]; return Slice{ .first = slice1, .second = slice2, }; } |
sliceLast() Returns a |
pub fn sliceLast(self: RingBuffer, length: usize) Slice { return self.sliceAt(self.write_index + self.data.len - length, length); } |
Generated by zstd-browse2 on 2023-11-04 14:12:35 -0400. |