zig/lib/std / RingBuffer.zig

This ring buffer stores read and write indices while being able to utilise the full backing slice by incrementing the indices modulo twice the slice's length and reducing indices modulo the slice's length on slice access. This means that whether the ring buffer is full or empty can be distinguished by looking at the difference between the read and write indices without adding an extra boolean flag or having to reserve a slot in the buffer.

This ring buffer has not been implemented with thread safety in mind, and therefore should not be assumed to be suitable for use cases involving separate reader and writer threads.


const Allocator = @import("std").mem.Allocator;
const assert = @import("std").debug.assert;
const copyForwards = @import("std").mem.copyForwards;

const RingBuffer = @This();

data: []u8,
read_index: usize,
write_index: usize,

Error

pub const Error = error{ Full, ReadLengthInvalid };

init()

Allocate a new RingBuffer; deinit() should be called to free the buffer.

pub fn init(allocator: Allocator, capacity: usize) Allocator.Error!RingBuffer {
    const bytes = try allocator.alloc(u8, capacity);
    return RingBuffer{
        .data = bytes,
        .write_index = 0,
        .read_index = 0,
    };
}

deinit()

Free the data backing a RingBuffer; must be passed the same Allocator as init().

pub fn deinit(self: *RingBuffer, allocator: Allocator) void {
    allocator.free(self.data);
    self.* = undefined;
}

mask()

Returns index modulo the length of the backing slice.

pub fn mask(self: RingBuffer, index: usize) usize {
    return index % self.data.len;
}

mask2()

Returns index modulo twice the length of the backing slice.

pub fn mask2(self: RingBuffer, index: usize) usize {
    return index % (2 * self.data.len);
}

write()

Write byte into the ring buffer. Returns error.Full if the ring buffer is full.

pub fn write(self: *RingBuffer, byte: u8) Error!void {
    if (self.isFull()) return error.Full;
    self.writeAssumeCapacity(byte);
}

writeAssumeCapacity()

Write byte into the ring buffer. If the ring buffer is full, the oldest byte is overwritten.

pub fn writeAssumeCapacity(self: *RingBuffer, byte: u8) void {
    self.data[self.mask(self.write_index)] = byte;
    self.write_index = self.mask2(self.write_index + 1);
}

writeSlice()

Write bytes into the ring buffer. Returns error.Full if the ring buffer does not have enough space, without writing any data. Uses memcpy and so bytes must not overlap ring buffer data.

pub fn writeSlice(self: *RingBuffer, bytes: []const u8) Error!void {
    if (self.len() + bytes.len > self.data.len) return error.Full;
    self.writeSliceAssumeCapacity(bytes);
}

writeSliceAssumeCapacity()

Write bytes into the ring buffer. If there is not enough space, older bytes will be overwritten. Uses memcpy and so bytes must not overlap ring buffer data.

pub fn writeSliceAssumeCapacity(self: *RingBuffer, bytes: []const u8) void {
    const data_start = self.mask(self.write_index);
    const part1_data_end = @min(data_start + bytes.len, self.data.len);
    const part1_len = part1_data_end - data_start;
    @memcpy(self.data[data_start..part1_data_end], bytes[0..part1_len]);

    const remaining = bytes.len - part1_len;
    const to_write = @min(remaining, remaining % self.data.len + self.data.len);
    const part2_bytes_start = bytes.len - to_write;
    const part2_bytes_end = @min(part2_bytes_start + self.data.len, bytes.len);
    const part2_len = part2_bytes_end - part2_bytes_start;
    @memcpy(self.data[0..part2_len], bytes[part2_bytes_start..part2_bytes_end]);
    if (part2_bytes_end != bytes.len) {
        const part3_len = bytes.len - part2_bytes_end;
        @memcpy(self.data[0..part3_len], bytes[part2_bytes_end..bytes.len]);
    }
    self.write_index = self.mask2(self.write_index + bytes.len);
}

writeSliceForwards()

Write bytes into the ring buffer. Returns error.Full if the ring buffer does not have enough space, without writing any data. Uses copyForwards and can write slices from this RingBuffer into itself.

pub fn writeSliceForwards(self: *RingBuffer, bytes: []const u8) Error!void {
    if (self.len() + bytes.len > self.data.len) return error.Full;
    self.writeSliceForwardsAssumeCapacity(bytes);
}

writeSliceForwardsAssumeCapacity()

Write bytes into the ring buffer. If there is not enough space, older bytes will be overwritten. Uses copyForwards and can write slices from this RingBuffer into itself.

pub fn writeSliceForwardsAssumeCapacity(self: *RingBuffer, bytes: []const u8) void {
    const data_start = self.mask(self.write_index);
    const part1_data_end = @min(data_start + bytes.len, self.data.len);
    const part1_len = part1_data_end - data_start;
    copyForwards(u8, self.data[data_start..], bytes[0..part1_len]);

    const remaining = bytes.len - part1_len;
    const to_write = @min(remaining, remaining % self.data.len + self.data.len);
    const part2_bytes_start = bytes.len - to_write;
    const part2_bytes_end = @min(part2_bytes_start + self.data.len, bytes.len);
    copyForwards(u8, self.data[0..], bytes[part2_bytes_start..part2_bytes_end]);
    if (part2_bytes_end != bytes.len)
        copyForwards(u8, self.data[0..], bytes[part2_bytes_end..bytes.len]);
    self.write_index = self.mask2(self.write_index + bytes.len);
}

read()

Consume a byte from the ring buffer and return it. Returns null if the ring buffer is empty.

pub fn read(self: *RingBuffer) ?u8 {
    if (self.isEmpty()) return null;
    return self.readAssumeLength();
}

readAssumeLength()

Consume a byte from the ring buffer and return it; asserts that the buffer is not empty.

pub fn readAssumeLength(self: *RingBuffer) u8 {
    assert(!self.isEmpty());
    const byte = self.data[self.mask(self.read_index)];
    self.read_index = self.mask2(self.read_index + 1);
    return byte;
}

readFirst()

Reads first length bytes written to the ring buffer into dest; Returns Error.ReadLengthInvalid if length greater than ring or dest length Uses memcpy and so dest must not overlap ring buffer data.

pub fn readFirst(self: *RingBuffer, dest: []u8, length: usize) Error!void {
    if (length > self.len() or length > dest.len) return error.ReadLengthInvalid;
    self.readFirstAssumeLength(dest, length);
}

readFirstAssumeLength()

Reads first length bytes written to the ring buffer into dest; Asserts that length not greater than ring buffer or dest length Uses memcpy and so dest must not overlap ring buffer data.

pub fn readFirstAssumeLength(self: *RingBuffer, dest: []u8, length: usize) void {
    assert(length <= self.len() and length <= dest.len);
    const data_start = self.mask(self.read_index);
    const part1_data_end = @min(self.data.len, data_start + length);
    const part1_len = part1_data_end - data_start;
    const part2_len = length - part1_len;
    @memcpy(dest[0..part1_len], self.data[data_start..part1_data_end]);
    @memcpy(dest[part1_len..length], self.data[0..part2_len]);
    self.read_index = self.mask2(self.read_index + length);
}

readLast()

Reads last length bytes written to the ring buffer into dest; Returns Error.ReadLengthInvalid if length greater than ring or dest length Uses memcpy and so dest must not overlap ring buffer data.

pub fn readLast(self: *RingBuffer, dest: []u8, length: usize) Error!void {
    if (length > self.len() or length > dest.len) return error.ReadLengthInvalid;
    self.readLastAssumeLength(dest, length);
}

readLastAssumeLength()

Reads last length bytes written to the ring buffer into dest; Asserts that length not greater than ring buffer or dest length Uses memcpy and so dest must not overlap ring buffer data.

pub fn readLastAssumeLength(self: *RingBuffer, dest: []u8, length: usize) void {
    assert(length <= self.len() and length <= dest.len);
    const data_start = self.mask(self.write_index + self.data.len - length);
    const part1_data_end = @min(self.data.len, data_start + length);
    const part1_len = part1_data_end - data_start;
    const part2_len = length - part1_len;
    @memcpy(dest[0..part1_len], self.data[data_start..part1_data_end]);
    @memcpy(dest[part1_len..length], self.data[0..part2_len]);
    self.write_index = if (self.write_index >= self.data_len) self.write_index - length else data_start;
}

isEmpty()

Returns true if the ring buffer is empty and false otherwise.

pub fn isEmpty(self: RingBuffer) bool {
    return self.write_index == self.read_index;
}

isFull()

Returns true if the ring buffer is full and false otherwise.

pub fn isFull(self: RingBuffer) bool {
    return self.mask2(self.write_index + self.data.len) == self.read_index;
}

len()

Returns the length

pub fn len(self: RingBuffer) usize {
    const wrap_offset = 2 * self.data.len * @intFromBool(self.write_index < self.read_index);
    const adjusted_write_index = self.write_index + wrap_offset;
    return adjusted_write_index - self.read_index;
}

Slice

A Slice represents a region of a ring buffer. The region is split into two sections as the ring buffer data will not be contiguous if the desired region wraps to the start of the backing slice.

pub const Slice = struct {
    first: []u8,
    second: []u8,
};

sliceAt()

Returns a Slice for the region of the ring buffer starting at self.mask(start_unmasked) with the specified length.

pub fn sliceAt(self: RingBuffer, start_unmasked: usize, length: usize) Slice {
    assert(length <= self.data.len);
    const slice1_start = self.mask(start_unmasked);
    const slice1_end = @min(self.data.len, slice1_start + length);
    const slice1 = self.data[slice1_start..slice1_end];
    const slice2 = self.data[0 .. length - slice1.len];
    return Slice{
        .first = slice1,
        .second = slice2,
    };
}

sliceLast()

Returns a Slice for the last length bytes written to the ring buffer. Does not check that any bytes have been written into the region.

pub fn sliceLast(self: RingBuffer, length: usize) Slice {
    return self.sliceAt(self.write_index + self.data.len - length, length);
}