zig/lib/std / Thread.zig

This struct represents a kernel thread, and acts as a namespace for concurrency primitives that operate on kernel threads. For concurrency primitives that support both evented I/O and async I/O, see the respective names in the top level std namespace.


const std = @import("std.zig");
const builtin = @import("builtin");
const math = std.math;
const os = std.os;
const assert = std.debug.assert;
const target = builtin.target;
const Atomic = std.atomic.Atomic;

Futex

Thread/Futex.zig
pub const Futex = @import("Thread/Futex.zig");

ResetEvent

Thread/ResetEvent.zig
pub const ResetEvent = @import("Thread/ResetEvent.zig");

Mutex

Thread/Mutex.zig
pub const Mutex = @import("Thread/Mutex.zig");

Semaphore

Thread/Semaphore.zig
pub const Semaphore = @import("Thread/Semaphore.zig");

Condition

Thread/Condition.zig
pub const Condition = @import("Thread/Condition.zig");

RwLock

Thread/RwLock.zig
pub const RwLock = @import("Thread/RwLock.zig");

Pool

Thread/Pool.zig
pub const Pool = @import("Thread/Pool.zig");

WaitGroup

Thread/WaitGroup.zig
pub const WaitGroup = @import("Thread/WaitGroup.zig");

use_pthreads

pub const use_pthreads = target.os.tag != .windows and target.os.tag != .wasi and builtin.link_libc;

const Thread = @This();
const Impl = if (target.os.tag == .windows)
    WindowsThreadImpl
else if (use_pthreads)
    PosixThreadImpl
else if (target.os.tag == .linux)
    LinuxThreadImpl
else if (target.os.tag == .wasi)
    WasiThreadImpl
else
    UnsupportedImpl;

impl: Impl,

max_name_len

pub const max_name_len = switch (target.os.tag) {
    .linux => 15,
    .windows => 31,
    .macos, .ios, .watchos, .tvos => 63,
    .netbsd => 31,
    .freebsd => 15,
    .openbsd => 23,
    .dragonfly => 1023,
    .solaris, .illumos => 31,
    else => 0,
};

SetNameError

pub const SetNameError = error{
    NameTooLong,
    Unsupported,
    Unexpected,
} || os.PrctlError || os.WriteError || std.fs.File.OpenError || std.fmt.BufPrintError;

setName()

pub fn setName(self: Thread, name: []const u8) SetNameError!void {
    if (name.len > max_name_len) return error.NameTooLong;

    const name_with_terminator = blk: {
        var name_buf: [max_name_len:0]u8 = undefined;
        @memcpy(name_buf[0..name.len], name);
        name_buf[name.len] = 0;
        break :blk name_buf[0..name.len :0];
    };

    switch (target.os.tag) {
        .linux => if (use_pthreads) {
            if (self.getHandle() == std.c.pthread_self()) {
                // Set the name of the calling thread (no thread id required).
                const err = try os.prctl(.SET_NAME, .{@intFromPtr(name_with_terminator.ptr)});
                switch (@as(os.E, @enumFromInt(err))) {
                    .SUCCESS => return,
                    else => |e| return os.unexpectedErrno(e),
                }
            } else {
                const err = std.c.pthread_setname_np(self.getHandle(), name_with_terminator.ptr);
                switch (err) {
                    .SUCCESS => return,
                    .RANGE => unreachable,
                    else => |e| return os.unexpectedErrno(e),
                }
            }
        } else {
            var buf: [32]u8 = undefined;
            const path = try std.fmt.bufPrint(&buf, "/proc/self/task/{d}/comm", .{self.getHandle()});

            const file = try std.fs.cwd().openFile(path, .{ .mode = .write_only });
            defer file.close();

            try file.writer().writeAll(name);
            return;
        },
        .windows => {
            var buf: [max_name_len]u16 = undefined;
            const len = try std.unicode.utf8ToUtf16Le(&buf, name);
            const byte_len = math.cast(c_ushort, len * 2) orelse return error.NameTooLong;

            // Note: NT allocates its own copy, no use-after-free here.
            const unicode_string = os.windows.UNICODE_STRING{
                .Length = byte_len,
                .MaximumLength = byte_len,
                .Buffer = &buf,
            };

            switch (os.windows.ntdll.NtSetInformationThread(
                self.getHandle(),
                .ThreadNameInformation,
                &unicode_string,
                @sizeOf(os.windows.UNICODE_STRING),
            )) {
                .SUCCESS => return,
                .NOT_IMPLEMENTED => return error.Unsupported,
                else => |err| return os.windows.unexpectedStatus(err),
            }
        },
        .macos, .ios, .watchos, .tvos => if (use_pthreads) {
            // There doesn't seem to be a way to set the name for an arbitrary thread, only the current one.
            if (self.getHandle() != std.c.pthread_self()) return error.Unsupported;

            const err = std.c.pthread_setname_np(name_with_terminator.ptr);
            switch (err) {
                .SUCCESS => return,
                else => |e| return os.unexpectedErrno(e),
            }
        },
        .netbsd, .solaris, .illumos => if (use_pthreads) {
            const err = std.c.pthread_setname_np(self.getHandle(), name_with_terminator.ptr, null);
            switch (err) {
                .SUCCESS => return,
                .INVAL => unreachable,
                .SRCH => unreachable,
                .NOMEM => unreachable,
                else => |e| return os.unexpectedErrno(e),
            }
        },
        .freebsd, .openbsd => if (use_pthreads) {
            // Use pthread_set_name_np for FreeBSD because pthread_setname_np is FreeBSD 12.2+ only.
            // TODO maybe revisit this if depending on FreeBSD 12.2+ is acceptable because
            // pthread_setname_np can return an error.

            std.c.pthread_set_name_np(self.getHandle(), name_with_terminator.ptr);
            return;
        },
        .dragonfly => if (use_pthreads) {
            const err = std.c.pthread_setname_np(self.getHandle(), name_with_terminator.ptr);
            switch (err) {
                .SUCCESS => return,
                .INVAL => unreachable,
                .FAULT => unreachable,
                .NAMETOOLONG => unreachable, // already checked
                .SRCH => unreachable,
                else => |e| return os.unexpectedErrno(e),
            }
        },
        else => {},
    }
    return error.Unsupported;
}

GetNameError

pub const GetNameError = error{
    // For Windows, the name is converted from UTF16 to UTF8
    CodepointTooLarge,
    Utf8CannotEncodeSurrogateHalf,
    DanglingSurrogateHalf,
    ExpectedSecondSurrogateHalf,
    UnexpectedSecondSurrogateHalf,

    Unsupported,
    Unexpected,
} || os.PrctlError || os.ReadError || std.fs.File.OpenError || std.fmt.BufPrintError;

getName()

pub fn getName(self: Thread, buffer_ptr: *[max_name_len:0]u8) GetNameError!?[]const u8 {
    buffer_ptr[max_name_len] = 0;
    var buffer: [:0]u8 = buffer_ptr;

    switch (target.os.tag) {
        .linux => if (use_pthreads) {
            if (self.getHandle() == std.c.pthread_self()) {
                // Get the name of the calling thread (no thread id required).
                const err = try os.prctl(.GET_NAME, .{@intFromPtr(buffer.ptr)});
                switch (@as(os.E, @enumFromInt(err))) {
                    .SUCCESS => return std.mem.sliceTo(buffer, 0),
                    else => |e| return os.unexpectedErrno(e),
                }
            } else {
                const err = std.c.pthread_getname_np(self.getHandle(), buffer.ptr, max_name_len + 1);
                switch (err) {
                    .SUCCESS => return std.mem.sliceTo(buffer, 0),
                    .RANGE => unreachable,
                    else => |e| return os.unexpectedErrno(e),
                }
            }
        } else {
            var buf: [32]u8 = undefined;
            const path = try std.fmt.bufPrint(&buf, "/proc/self/task/{d}/comm", .{self.getHandle()});

            const file = try std.fs.cwd().openFile(path, .{});
            defer file.close();

            const data_len = try file.reader().readAll(buffer_ptr[0 .. max_name_len + 1]);

            return if (data_len >= 1) buffer[0 .. data_len - 1] else null;
        },
        .windows => {
            const buf_capacity = @sizeOf(os.windows.UNICODE_STRING) + (@sizeOf(u16) * max_name_len);
            var buf: [buf_capacity]u8 align(@alignOf(os.windows.UNICODE_STRING)) = undefined;

            switch (os.windows.ntdll.NtQueryInformationThread(
                self.getHandle(),
                .ThreadNameInformation,
                &buf,
                buf_capacity,
                null,
            )) {
                .SUCCESS => {
                    const string = @as(*const os.windows.UNICODE_STRING, @ptrCast(&buf));
                    const len = try std.unicode.utf16leToUtf8(buffer, string.Buffer[0 .. string.Length / 2]);
                    return if (len > 0) buffer[0..len] else null;
                },
                .NOT_IMPLEMENTED => return error.Unsupported,
                else => |err| return os.windows.unexpectedStatus(err),
            }
        },
        .macos, .ios, .watchos, .tvos => if (use_pthreads) {
            const err = std.c.pthread_getname_np(self.getHandle(), buffer.ptr, max_name_len + 1);
            switch (err) {
                .SUCCESS => return std.mem.sliceTo(buffer, 0),
                .SRCH => unreachable,
                else => |e| return os.unexpectedErrno(e),
            }
        },
        .netbsd, .solaris, .illumos => if (use_pthreads) {
            const err = std.c.pthread_getname_np(self.getHandle(), buffer.ptr, max_name_len + 1);
            switch (err) {
                .SUCCESS => return std.mem.sliceTo(buffer, 0),
                .INVAL => unreachable,
                .SRCH => unreachable,
                else => |e| return os.unexpectedErrno(e),
            }
        },
        .freebsd, .openbsd => if (use_pthreads) {
            // Use pthread_get_name_np for FreeBSD because pthread_getname_np is FreeBSD 12.2+ only.
            // TODO maybe revisit this if depending on FreeBSD 12.2+ is acceptable because pthread_getname_np can return an error.

            std.c.pthread_get_name_np(self.getHandle(), buffer.ptr, max_name_len + 1);
            return std.mem.sliceTo(buffer, 0);
        },
        .dragonfly => if (use_pthreads) {
            const err = std.c.pthread_getname_np(self.getHandle(), buffer.ptr, max_name_len + 1);
            switch (err) {
                .SUCCESS => return std.mem.sliceTo(buffer, 0),
                .INVAL => unreachable,
                .FAULT => unreachable,
                .SRCH => unreachable,
                else => |e| return os.unexpectedErrno(e),
            }
        },
        else => {},
    }
    return error.Unsupported;
}

Id

Represents an ID per thread guaranteed to be unique only within a process.

pub const Id = switch (target.os.tag) {
    .linux,
    .dragonfly,
    .netbsd,
    .freebsd,
    .openbsd,
    .haiku,
    .wasi,
    => u32,
    .macos, .ios, .watchos, .tvos => u64,
    .windows => os.windows.DWORD,
    else => usize,
};

getCurrentId()

Returns the platform ID of the callers thread. Attempts to use thread locals and avoid syscalls when possible.

pub fn getCurrentId() Id {
    return Impl.getCurrentId();
}

CpuCountError

pub const CpuCountError = error{
    PermissionDenied,
    SystemResources,
    Unexpected,
};

getCpuCount()

Returns the platforms view on the number of logical CPU cores available.

pub fn getCpuCount() CpuCountError!usize {
    return Impl.getCpuCount();
}

SpawnConfig

Configuration options for hints on how to spawn threads.

pub const SpawnConfig = struct {
    // TODO compile-time call graph analysis to determine stack upper bound
    // https://github.com/ziglang/zig/issues/157

    stack_size: usize = 16 * 1024 * 1024,
    allocator: ?std.mem.Allocator = null,
};

SpawnError

Size in bytes of the Thread's stack The allocator to be used to allocate memory for the to-be-spawned thread

pub const SpawnError = error{
    ThreadQuotaExceeded,

    SystemResources,

    OutOfMemory,

    LockedMemoryLimitExceeded,

    Unexpected,
};

spawn()

A system-imposed limit on the number of threads was encountered. There are a number of limits that may trigger this error: * the RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which limits the number of processes and threads for a real user ID, was reached; * the kernel's system-wide limit on the number of processes and threads, /proc/sys/kernel/threads-max, was reached (see proc(5)); * the maximum number of PIDs, /proc/sys/kernel/pid_max, was reached (see proc(5)); or * the PID limit (pids.max) imposed by the cgroup "process num‐ ber" (PIDs) controller was reached. The kernel cannot allocate sufficient memory to allocate a task structure for the child, or to copy those parts of the caller's context that need to be copied. Not enough userland memory to spawn the thread. mlockall is enabled, and the memory needed to spawn the thread would exceed the limit. Spawns a new thread which executes function using args and returns a handle to the spawned thread. config can be used as hints to the platform for now to spawn and execute the function. The caller must eventually either call join() to wait for the thread to finish and free its resources or call detach() to excuse the caller from calling join() and have the thread clean up its resources on completion.

pub fn spawn(config: SpawnConfig, comptime function: anytype, args: anytype) SpawnError!Thread {
    if (builtin.single_threaded) {
        @compileError("Cannot spawn thread when building in single-threaded mode");
    }

    const impl = try Impl.spawn(config, function, args);
    return Thread{ .impl = impl };
}

Handle

Represents a kernel thread handle. May be an integer or a pointer depending on the platform.

pub const Handle = Impl.ThreadHandle;

getHandle()

Returns the handle of this thread

pub fn getHandle(self: Thread) Handle {
    return self.impl.getHandle();
}

detach()

Release the obligation of the caller to call join() and have the thread clean up its own resources on completion. Once called, this consumes the Thread object and invoking any other functions on it is considered undefined behavior.

pub fn detach(self: Thread) void {
    return self.impl.detach();
}

join()

Waits for the thread to complete, then deallocates any resources created on spawn(). Once called, this consumes the Thread object and invoking any other functions on it is considered undefined behavior.

pub fn join(self: Thread) void {
    return self.impl.join();
}

YieldError

pub const YieldError = error{
    SystemCannotYield,
};

yield()

The system is not configured to allow yielding Yields the current thread potentially allowing other threads to run.

pub fn yield() YieldError!void {
    if (builtin.os.tag == .windows) {
        // The return value has to do with how many other threads there are; it is not
        // an error condition on Windows.
        _ = os.windows.kernel32.SwitchToThread();
        return;
    }
    switch (os.errno(os.system.sched_yield())) {
        .SUCCESS => return,
        .NOSYS => return error.SystemCannotYield,
        else => return error.SystemCannotYield,
    }
}

const Completion = Atomic(enum(u8) {
    running,
    detached,
    completed,
});

fn callFn(comptime f: anytype, args: anytype) switch (Impl) {
    WindowsThreadImpl => std.os.windows.DWORD,
    LinuxThreadImpl => u8,
    PosixThreadImpl => ?*anyopaque,
    else => unreachable,
} {
    const default_value = if (Impl == PosixThreadImpl) null else 0;
    const bad_fn_ret = "expected return type of startFn to be 'u8', 'noreturn', 'void', or '!void'";

    switch (@typeInfo(@typeInfo(@TypeOf(f)).Fn.return_type.?)) {
        .NoReturn => {
            @call(.auto, f, args);
        },
        .Void => {
            @call(.auto, f, args);
            return default_value;
        },
        .Int => |info| {
            if (info.bits != 8) {
                @compileError(bad_fn_ret);
            }

            const status = @call(.auto, f, args);
            if (Impl != PosixThreadImpl) {
                return status;
            }

            // pthreads don't support exit status, ignore value
            return default_value;
        },
        .ErrorUnion => |info| {
            if (info.payload != void) {
                @compileError(bad_fn_ret);
            }

            @call(.auto, f, args) catch |err| {
                std.debug.print("error: {s}\n", .{@errorName(err)});
                if (@errorReturnTrace()) |trace| {
                    std.debug.dumpStackTrace(trace.*);
                }
            };

            return default_value;
        },
        else => {
            @compileError(bad_fn_ret);
        },
    }
}

const UnsupportedImpl = struct {
    pub const ThreadHandle = void;

    fn getCurrentId() usize {
        return unsupported({});
    }

    fn getCpuCount() !usize {
        return unsupported({});
    }

    fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
        return unsupported(.{ config, f, args });
    }

    fn getHandle(self: Impl) ThreadHandle {
        return unsupported(self);
    }

    fn detach(self: Impl) void {
        return unsupported(self);
    }

    fn join(self: Impl) void {
        return unsupported(self);
    }

    fn unsupported(unused: anytype) noreturn {
        _ = unused;
        @compileError("Unsupported operating system " ++ @tagName(target.os.tag));
    }
};

const WindowsThreadImpl = struct {
    const windows = os.windows;

    pub const ThreadHandle = windows.HANDLE;

    fn getCurrentId() windows.DWORD {
        return windows.kernel32.GetCurrentThreadId();
    }

    fn getCpuCount() !usize {
        // Faster than calling into GetSystemInfo(), even if amortized.
        return windows.peb().NumberOfProcessors;
    }

    thread: *ThreadCompletion,

    const ThreadCompletion = struct {
        completion: Completion,
        heap_ptr: windows.PVOID,
        heap_handle: windows.HANDLE,
        thread_handle: windows.HANDLE = undefined,

        fn free(self: ThreadCompletion) void {
            const status = windows.kernel32.HeapFree(self.heap_handle, 0, self.heap_ptr);
            assert(status != 0);
        }
    };

    fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
        const Args = @TypeOf(args);
        const Instance = struct {
            fn_args: Args,
            thread: ThreadCompletion,

            fn entryFn(raw_ptr: windows.PVOID) callconv(.C) windows.DWORD {
                const self: *@This() = @ptrCast(@alignCast(raw_ptr));
                defer switch (self.thread.completion.swap(.completed, .SeqCst)) {
                    .running => {},
                    .completed => unreachable,
                    .detached => self.thread.free(),
                };
                return callFn(f, self.fn_args);
            }
        };

        const heap_handle = windows.kernel32.GetProcessHeap() orelse return error.OutOfMemory;
        const alloc_bytes = @alignOf(Instance) + @sizeOf(Instance);
        const alloc_ptr = windows.kernel32.HeapAlloc(heap_handle, 0, alloc_bytes) orelse return error.OutOfMemory;
        errdefer assert(windows.kernel32.HeapFree(heap_handle, 0, alloc_ptr) != 0);

        const instance_bytes = @as([*]u8, @ptrCast(alloc_ptr))[0..alloc_bytes];
        var fba = std.heap.FixedBufferAllocator.init(instance_bytes);
        const instance = fba.allocator().create(Instance) catch unreachable;
        instance.* = .{
            .fn_args = args,
            .thread = .{
                .completion = Completion.init(.running),
                .heap_ptr = alloc_ptr,
                .heap_handle = heap_handle,
            },
        };

        // Windows appears to only support SYSTEM_INFO.dwAllocationGranularity minimum stack size.
        // Going lower makes it default to that specified in the executable (~1mb).
        // Its also fine if the limit here is incorrect as stack size is only a hint.
        var stack_size = std.math.cast(u32, config.stack_size) orelse std.math.maxInt(u32);
        stack_size = @max(64 * 1024, stack_size);

        instance.thread.thread_handle = windows.kernel32.CreateThread(
            null,
            stack_size,
            Instance.entryFn,
            instance,
            0,
            null,
        ) orelse {
            const errno = windows.kernel32.GetLastError();
            return windows.unexpectedError(errno);
        };

        return Impl{ .thread = &instance.thread };
    }

    fn getHandle(self: Impl) ThreadHandle {
        return self.thread.thread_handle;
    }

    fn detach(self: Impl) void {
        windows.CloseHandle(self.thread.thread_handle);
        switch (self.thread.completion.swap(.detached, .SeqCst)) {
            .running => {},
            .completed => self.thread.free(),
            .detached => unreachable,
        }
    }

    fn join(self: Impl) void {
        windows.WaitForSingleObjectEx(self.thread.thread_handle, windows.INFINITE, false) catch unreachable;
        windows.CloseHandle(self.thread.thread_handle);
        assert(self.thread.completion.load(.SeqCst) == .completed);
        self.thread.free();
    }
};

const PosixThreadImpl = struct {
    const c = std.c;

    pub const ThreadHandle = c.pthread_t;

    fn getCurrentId() Id {
        switch (target.os.tag) {
            .linux => {
                return LinuxThreadImpl.getCurrentId();
            },
            .macos, .ios, .watchos, .tvos => {
                var thread_id: u64 = undefined;
                // Pass thread=null to get the current thread ID.
                assert(c.pthread_threadid_np(null, &thread_id) == 0);
                return thread_id;
            },
            .dragonfly => {
                return @as(u32, @bitCast(c.lwp_gettid()));
            },
            .netbsd => {
                return @as(u32, @bitCast(c._lwp_self()));
            },
            .freebsd => {
                return @as(u32, @bitCast(c.pthread_getthreadid_np()));
            },
            .openbsd => {
                return @as(u32, @bitCast(c.getthrid()));
            },
            .haiku => {
                return @as(u32, @bitCast(c.find_thread(null)));
            },
            else => {
                return @intFromPtr(c.pthread_self());
            },
        }
    }

    fn getCpuCount() !usize {
        switch (target.os.tag) {
            .linux => {
                return LinuxThreadImpl.getCpuCount();
            },
            .openbsd => {
                var count: c_int = undefined;
                var count_size: usize = @sizeOf(c_int);
                const mib = [_]c_int{ os.CTL.HW, os.system.HW.NCPUONLINE };
                os.sysctl(&mib, &count, &count_size, null, 0) catch |err| switch (err) {
                    error.NameTooLong, error.UnknownName => unreachable,
                    else => |e| return e,
                };
                return @as(usize, @intCast(count));
            },
            .solaris, .illumos => {
                // The "proper" way to get the cpu count would be to query
                // /dev/kstat via ioctls, and traverse a linked list for each
                // cpu.
                const rc = c.sysconf(os._SC.NPROCESSORS_ONLN);
                return switch (os.errno(rc)) {
                    .SUCCESS => @as(usize, @intCast(rc)),
                    else => |err| os.unexpectedErrno(err),
                };
            },
            .haiku => {
                var system_info: os.system.system_info = undefined;
                const rc = os.system.get_system_info(&system_info); // always returns B_OK
                return switch (os.errno(rc)) {
                    .SUCCESS => @as(usize, @intCast(system_info.cpu_count)),
                    else => |err| os.unexpectedErrno(err),
                };
            },
            else => {
                var count: c_int = undefined;
                var count_len: usize = @sizeOf(c_int);
                const name = if (comptime target.isDarwin()) "hw.logicalcpu" else "hw.ncpu";
                os.sysctlbynameZ(name, &count, &count_len, null, 0) catch |err| switch (err) {
                    error.NameTooLong, error.UnknownName => unreachable,
                    else => |e| return e,
                };
                return @as(usize, @intCast(count));
            },
        }
    }

    handle: ThreadHandle,

    fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
        const Args = @TypeOf(args);
        const allocator = std.heap.c_allocator;

        const Instance = struct {
            fn entryFn(raw_arg: ?*anyopaque) callconv(.C) ?*anyopaque {
                // @alignCast() below doesn't support zero-sized-types (ZST)
                if (@sizeOf(Args) < 1) {
                    return callFn(f, @as(Args, undefined));
                }

                const args_ptr: *Args = @ptrCast(@alignCast(raw_arg));
                defer allocator.destroy(args_ptr);
                return callFn(f, args_ptr.*);
            }
        };

        const args_ptr = try allocator.create(Args);
        args_ptr.* = args;
        errdefer allocator.destroy(args_ptr);

        var attr: c.pthread_attr_t = undefined;
        if (c.pthread_attr_init(&attr) != .SUCCESS) return error.SystemResources;
        defer assert(c.pthread_attr_destroy(&attr) == .SUCCESS);

        // Use the same set of parameters used by the libc-less impl.
        const stack_size = @max(config.stack_size, 16 * 1024);
        assert(c.pthread_attr_setstacksize(&attr, stack_size) == .SUCCESS);
        assert(c.pthread_attr_setguardsize(&attr, std.mem.page_size) == .SUCCESS);

        var handle: c.pthread_t = undefined;
        switch (c.pthread_create(
            &handle,
            &attr,
            Instance.entryFn,
            if (@sizeOf(Args) > 1) @as(*anyopaque, @ptrCast(args_ptr)) else undefined,
        )) {
            .SUCCESS => return Impl{ .handle = handle },
            .AGAIN => return error.SystemResources,
            .PERM => unreachable,
            .INVAL => unreachable,
            else => |err| return os.unexpectedErrno(err),
        }
    }

    fn getHandle(self: Impl) ThreadHandle {
        return self.handle;
    }

    fn detach(self: Impl) void {
        switch (c.pthread_detach(self.handle)) {
            .SUCCESS => {},
            .INVAL => unreachable, // thread handle is not joinable
            .SRCH => unreachable, // thread handle is invalid
            else => unreachable,
        }
    }

    fn join(self: Impl) void {
        switch (c.pthread_join(self.handle, null)) {
            .SUCCESS => {},
            .INVAL => unreachable, // thread handle is not joinable (or another thread is already joining in)
            .SRCH => unreachable, // thread handle is invalid
            .DEADLK => unreachable, // two threads tried to join each other
            else => unreachable,
        }
    }
};

const WasiThreadImpl = struct {
    thread: *WasiThread,

    pub const ThreadHandle = i32;
    threadlocal var tls_thread_id: Id = 0;

    const WasiThread = struct {
        tid: Atomic(i32) = Atomic(i32).init(0),
        memory: []u8,
        allocator: std.mem.Allocator,
        state: State = State.init(.running),
    };

    const Instance = struct {
        thread: WasiThread,
        tls_offset: usize,
        stack_offset: usize,
        raw_ptr: usize,
        call_back: *const fn (usize) void,
        original_stack_pointer: [*]u8,
    };

    const State = Atomic(enum(u8) { running, completed, detached });

    fn getCurrentId() Id {
        return tls_thread_id;
    }

    fn getHandle(self: Impl) ThreadHandle {
        return self.thread.tid.load(.SeqCst);
    }

    fn detach(self: Impl) void {
        switch (self.thread.state.swap(.detached, .SeqCst)) {
            .running => {},
            .completed => self.join(),
            .detached => unreachable,
        }
    }

    fn join(self: Impl) void {
        defer {
            // Create a copy of the allocator so we do not free the reference to the
            // original allocator while freeing the memory.
            var allocator = self.thread.allocator;
            allocator.free(self.thread.memory);
        }

        var spin: u8 = 10;
        while (true) {
            const tid = self.thread.tid.load(.SeqCst);
            if (tid == 0) {
                break;
            }

            if (spin > 0) {
                spin -= 1;
                std.atomic.spinLoopHint();
                continue;
            }

            const result = asm (
                \\ local.get %[ptr]
                \\ local.get %[expected]
                \\ i64.const -1 # infinite
                \\ memory.atomic.wait32 0
                \\ local.set %[ret]
                : [ret] "=r" (-> u32),
                : [ptr] "r" (&self.thread.tid.value),
                  [expected] "r" (tid),
            );
            switch (result) {
                0 => continue, // ok
                1 => continue, // expected =! loaded
                2 => unreachable, // timeout (infinite)
                else => unreachable,
            }
        }
    }

    fn spawn(config: std.Thread.SpawnConfig, comptime f: anytype, args: anytype) !WasiThreadImpl {
        if (config.allocator == null) return error.OutOfMemory; // an allocator is required to spawn a WASI-thread

        // Wrapping struct required to hold the user-provided function arguments.
        const Wrapper = struct {
            args: @TypeOf(args),
            fn entry(ptr: usize) void {
                const w: *@This() = @ptrFromInt(ptr);
                @call(.auto, f, w.args);
            }
        };

        var stack_offset: usize = undefined;
        var tls_offset: usize = undefined;
        var wrapper_offset: usize = undefined;
        var instance_offset: usize = undefined;

        // Calculate the bytes we have to allocate to store all thread information, including:
        // - The actual stack for the thread
        // - The TLS segment
        // - `Instance` - containing information about how to call the user's function.
        const map_bytes = blk: {
            // start with atleast a single page, which is used as a guard to prevent
            // other threads clobbering our new thread.
            // Unfortunately, WebAssembly has no notion of read-only segments, so this
            // is only a best effort.
            var bytes: usize = std.wasm.page_size;

            bytes = std.mem.alignForward(usize, bytes, 16); // align stack to 16 bytes
            stack_offset = bytes;
            bytes += @max(std.wasm.page_size, config.stack_size);

            bytes = std.mem.alignForward(usize, bytes, __tls_align());
            tls_offset = bytes;
            bytes += __tls_size();

            bytes = std.mem.alignForward(usize, bytes, @alignOf(Wrapper));
            wrapper_offset = bytes;
            bytes += @sizeOf(Wrapper);

            bytes = std.mem.alignForward(usize, bytes, @alignOf(Instance));
            instance_offset = bytes;
            bytes += @sizeOf(Instance);

            bytes = std.mem.alignForward(usize, bytes, std.wasm.page_size);
            break :blk bytes;
        };

        // Allocate the amount of memory required for all meta data.
        const allocated_memory = try config.allocator.?.alloc(u8, map_bytes);

        const wrapper: *Wrapper = @ptrCast(@alignCast(&allocated_memory[wrapper_offset]));
        wrapper.* = .{ .args = args };

        const instance: *Instance = @ptrCast(@alignCast(&allocated_memory[instance_offset]));
        instance.* = .{
            .thread = .{ .memory = allocated_memory, .allocator = config.allocator.? },
            .tls_offset = tls_offset,
            .stack_offset = stack_offset,
            .raw_ptr = @intFromPtr(wrapper),
            .call_back = &Wrapper.entry,
            .original_stack_pointer = __get_stack_pointer(),
        };

        const tid = spawnWasiThread(instance);
        // The specification says any value lower than 0 indicates an error.
        // The values of such error are unspecified. WASI-Libc treats it as EAGAIN.
        if (tid < 0) {
            return error.SystemResources;
        }
        instance.thread.tid.store(tid, .SeqCst);

        return .{ .thread = &instance.thread };
    }

    export fn wasi_thread_start(tid: i32, arg: *Instance) void {
        if (builtin.single_threaded) {
            // ensure function is not analyzed in single-threaded mode
            return;
        }
        __set_stack_pointer(arg.thread.memory.ptr + arg.stack_offset);
        __wasm_init_tls(arg.thread.memory.ptr + arg.tls_offset);
        @atomicStore(u32, &WasiThreadImpl.tls_thread_id, @intCast(tid), .SeqCst);

        // Finished bootstrapping, call user's procedure.
        arg.call_back(arg.raw_ptr);

        switch (arg.thread.state.swap(.completed, .SeqCst)) {
            .running => {
                // reset the Thread ID
                asm volatile (
                    \\ local.get %[ptr]
                    \\ i32.const 0
                    \\ i32.atomic.store 0
                    :
                    : [ptr] "r" (&arg.thread.tid.value),
                );

                // Wake the main thread listening to this thread
                asm volatile (
                    \\ local.get %[ptr]
                    \\ i32.const 1 # waiters
                    \\ memory.atomic.notify 0
                    \\ drop # no need to know the waiters
                    :
                    : [ptr] "r" (&arg.thread.tid.value),
                );
            },
            .completed => unreachable,
            .detached => {
                // restore the original stack pointer so we can free the memory
                // without having to worry about freeing the stack
                __set_stack_pointer(arg.original_stack_pointer);
                // Ensure a copy so we don't free the allocator reference itself
                var allocator = arg.thread.allocator;
                allocator.free(arg.thread.memory);
            },
        }
    }

    const spawnWasiThread = @"thread-spawn";
    extern "wasi" fn @"thread-spawn"(arg: *Instance) i32;

    extern fn __wasm_init_tls(memory: [*]u8) void;

    inline fn __tls_base() [*]u8 {
        return asm (
            \\ .globaltype __tls_base, i32
            \\ global.get __tls_base
            \\ local.set %[ret]
            : [ret] "=r" (-> [*]u8),
        );
    }

    inline fn __tls_size() u32 {
        return asm volatile (
            \\ .globaltype __tls_size, i32, immutable
            \\ global.get __tls_size
            \\ local.set %[ret]
            : [ret] "=r" (-> u32),
        );
    }

    inline fn __tls_align() u32 {
        return asm (
            \\ .globaltype __tls_align, i32, immutable
            \\ global.get __tls_align
            \\ local.set %[ret]
            : [ret] "=r" (-> u32),
        );
    }

    inline fn __set_stack_pointer(addr: [*]u8) void {
        asm volatile (
            \\ local.get %[ptr]
            \\ global.set __stack_pointer
            :
            : [ptr] "r" (addr),
        );
    }

    inline fn __get_stack_pointer() [*]u8 {
        return asm (
            \\ global.get __stack_pointer
            \\ local.set %[stack_ptr]
            : [stack_ptr] "=r" (-> [*]u8),
        );
    }
};

const LinuxThreadImpl = struct {
    const linux = os.linux;

    pub const ThreadHandle = i32;

    threadlocal var tls_thread_id: ?Id = null;

    fn getCurrentId() Id {
        return tls_thread_id orelse {
            const tid = @as(u32, @bitCast(linux.gettid()));
            tls_thread_id = tid;
            return tid;
        };
    }

    fn getCpuCount() !usize {
        const cpu_set = try os.sched_getaffinity(0);
        // TODO: should not need this usize cast
        return @as(usize, os.CPU_COUNT(cpu_set));
    }

    thread: *ThreadCompletion,

    const ThreadCompletion = struct {
        completion: Completion = Completion.init(.running),
        child_tid: Atomic(i32) = Atomic(i32).init(1),
        parent_tid: i32 = undefined,
        mapped: []align(std.mem.page_size) u8,

        fn freeAndExit(self: *ThreadCompletion) noreturn {
            switch (target.cpu.arch) {
                .x86 => asm volatile (
                    \\  movl $91, %%eax
                    \\  movl %[ptr], %%ebx
                    \\  movl %[len], %%ecx
                    \\  int $128
                    \\  movl $1, %%eax
                    \\  movl $0, %%ebx
                    \\  int $128
                    :
                    : [ptr] "r" (@intFromPtr(self.mapped.ptr)),
                      [len] "r" (self.mapped.len),
                    : "memory"
                ),
                .x86_64 => asm volatile (
                    \\  movq $11, %%rax
                    \\  syscall
                    \\  movq $60, %%rax
                    \\  movq $1, %%rdi
                    \\  syscall
                    :
                    : [ptr] "{rdi}" (@intFromPtr(self.mapped.ptr)),
                      [len] "{rsi}" (self.mapped.len),
                ),
                .arm, .armeb, .thumb, .thumbeb => asm volatile (
                    \\  mov r7, #91
                    \\  mov r0, %[ptr]
                    \\  mov r1, %[len]
                    \\  svc 0
                    \\  mov r7, #1
                    \\  mov r0, #0
                    \\  svc 0
                    :
                    : [ptr] "r" (@intFromPtr(self.mapped.ptr)),
                      [len] "r" (self.mapped.len),
                    : "memory"
                ),
                .aarch64, .aarch64_be, .aarch64_32 => asm volatile (
                    \\  mov x8, #215
                    \\  mov x0, %[ptr]
                    \\  mov x1, %[len]
                    \\  svc 0
                    \\  mov x8, #93
                    \\  mov x0, #0
                    \\  svc 0
                    :
                    : [ptr] "r" (@intFromPtr(self.mapped.ptr)),
                      [len] "r" (self.mapped.len),
                    : "memory"
                ),
                .mips, .mipsel => asm volatile (
                    \\  move $sp, $25
                    \\  li $2, 4091
                    \\  move $4, %[ptr]
                    \\  move $5, %[len]
                    \\  syscall
                    \\  li $2, 4001
                    \\  li $4, 0
                    \\  syscall
                    :
                    : [ptr] "r" (@intFromPtr(self.mapped.ptr)),
                      [len] "r" (self.mapped.len),
                    : "memory"
                ),
                .mips64, .mips64el => asm volatile (
                    \\  li $2, 4091
                    \\  move $4, %[ptr]
                    \\  move $5, %[len]
                    \\  syscall
                    \\  li $2, 4001
                    \\  li $4, 0
                    \\  syscall
                    :
                    : [ptr] "r" (@intFromPtr(self.mapped.ptr)),
                      [len] "r" (self.mapped.len),
                    : "memory"
                ),
                .powerpc, .powerpcle, .powerpc64, .powerpc64le => asm volatile (
                    \\  li 0, 91
                    \\  mr %[ptr], 3
                    \\  mr %[len], 4
                    \\  sc
                    \\  li 0, 1
                    \\  li 3, 0
                    \\  sc
                    \\  blr
                    :
                    : [ptr] "r" (@intFromPtr(self.mapped.ptr)),
                      [len] "r" (self.mapped.len),
                    : "memory"
                ),
                .riscv64 => asm volatile (
                    \\  li a7, 215
                    \\  mv a0, %[ptr]
                    \\  mv a1, %[len]
                    \\  ecall
                    \\  li a7, 93
                    \\  mv a0, zero
                    \\  ecall
                    :
                    : [ptr] "r" (@intFromPtr(self.mapped.ptr)),
                      [len] "r" (self.mapped.len),
                    : "memory"
                ),
                .sparc64 => asm volatile (
                    \\ # SPARCs really don't like it when active stack frames
                    \\ # is unmapped (it will result in a segfault), so we
                    \\ # force-deactivate it by running `restore` until
                    \\ # all frames are cleared.
                    \\  1:
                    \\  cmp %%fp, 0
                    \\  beq 2f
                    \\  nop
                    \\  ba 1b
                    \\  restore
                    \\  2:
                    \\  mov 73, %%g1
                    \\  mov %[ptr], %%o0
                    \\  mov %[len], %%o1
                    \\  # Flush register window contents to prevent background
                    \\  # memory access before unmapping the stack.
                    \\  flushw
                    \\  t 0x6d
                    \\  mov 1, %%g1
                    \\  mov 1, %%o0
                    \\  t 0x6d
                    :
                    : [ptr] "r" (@intFromPtr(self.mapped.ptr)),
                      [len] "r" (self.mapped.len),
                    : "memory"
                ),
                else => |cpu_arch| @compileError("Unsupported linux arch: " ++ @tagName(cpu_arch)),
            }
            unreachable;
        }
    };

    fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
        const page_size = std.mem.page_size;
        const Args = @TypeOf(args);
        const Instance = struct {
            fn_args: Args,
            thread: ThreadCompletion,

            fn entryFn(raw_arg: usize) callconv(.C) u8 {
                const self = @as(*@This(), @ptrFromInt(raw_arg));
                defer switch (self.thread.completion.swap(.completed, .SeqCst)) {
                    .running => {},
                    .completed => unreachable,
                    .detached => self.thread.freeAndExit(),
                };
                return callFn(f, self.fn_args);
            }
        };

        var guard_offset: usize = undefined;
        var stack_offset: usize = undefined;
        var tls_offset: usize = undefined;
        var instance_offset: usize = undefined;

        const map_bytes = blk: {
            var bytes: usize = page_size;
            guard_offset = bytes;

            bytes += @max(page_size, config.stack_size);
            bytes = std.mem.alignForward(usize, bytes, page_size);
            stack_offset = bytes;

            bytes = std.mem.alignForward(usize, bytes, linux.tls.tls_image.alloc_align);
            tls_offset = bytes;
            bytes += linux.tls.tls_image.alloc_size;

            bytes = std.mem.alignForward(usize, bytes, @alignOf(Instance));
            instance_offset = bytes;
            bytes += @sizeOf(Instance);

            bytes = std.mem.alignForward(usize, bytes, page_size);
            break :blk bytes;
        };

        // map all memory needed without read/write permissions
        // to avoid committing the whole region right away
        // anonymous mapping ensures file descriptor limits are not exceeded
        const mapped = os.mmap(
            null,
            map_bytes,
            os.PROT.NONE,
            os.MAP.PRIVATE | os.MAP.ANONYMOUS,
            -1,
            0,
        ) catch |err| switch (err) {
            error.MemoryMappingNotSupported => unreachable,
            error.AccessDenied => unreachable,
            error.PermissionDenied => unreachable,
            error.ProcessFdQuotaExceeded => unreachable,
            error.SystemFdQuotaExceeded => unreachable,
            else => |e| return e,
        };
        assert(mapped.len >= map_bytes);
        errdefer os.munmap(mapped);

        // map everything but the guard page as read/write
        os.mprotect(
            @alignCast(mapped[guard_offset..]),
            os.PROT.READ | os.PROT.WRITE,
        ) catch |err| switch (err) {
            error.AccessDenied => unreachable,
            else => |e| return e,
        };

        // Prepare the TLS segment and prepare a user_desc struct when needed on x86
        var tls_ptr = os.linux.tls.prepareTLS(mapped[tls_offset..]);
        var user_desc: if (target.cpu.arch == .x86) os.linux.user_desc else void = undefined;
        if (target.cpu.arch == .x86) {
            defer tls_ptr = @intFromPtr(&user_desc);
            user_desc = .{
                .entry_number = os.linux.tls.tls_image.gdt_entry_number,
                .base_addr = tls_ptr,
                .limit = 0xfffff,
                .flags = .{
                    .seg_32bit = 1,
                    .contents = 0, // Data
                    .read_exec_only = 0,
                    .limit_in_pages = 1,
                    .seg_not_present = 0,
                    .useable = 1,
                },
            };
        }

        const instance: *Instance = @ptrCast(@alignCast(&mapped[instance_offset]));
        instance.* = .{
            .fn_args = args,
            .thread = .{ .mapped = mapped },
        };

        const flags: u32 = linux.CLONE.THREAD | linux.CLONE.DETACHED |
            linux.CLONE.VM | linux.CLONE.FS | linux.CLONE.FILES |
            linux.CLONE.PARENT_SETTID | linux.CLONE.CHILD_CLEARTID |
            linux.CLONE.SIGHAND | linux.CLONE.SYSVSEM | linux.CLONE.SETTLS;

        switch (linux.getErrno(linux.clone(
            Instance.entryFn,
            @intFromPtr(&mapped[stack_offset]),
            flags,
            @intFromPtr(instance),
            &instance.thread.parent_tid,
            tls_ptr,
            &instance.thread.child_tid.value,
        ))) {
            .SUCCESS => return Impl{ .thread = &instance.thread },
            .AGAIN => return error.ThreadQuotaExceeded,
            .INVAL => unreachable,
            .NOMEM => return error.SystemResources,
            .NOSPC => unreachable,
            .PERM => unreachable,
            .USERS => unreachable,
            else => |err| return os.unexpectedErrno(err),
        }
    }

    fn getHandle(self: Impl) ThreadHandle {
        return self.thread.parent_tid;
    }

    fn detach(self: Impl) void {
        switch (self.thread.completion.swap(.detached, .SeqCst)) {
            .running => {},
            .completed => self.join(),
            .detached => unreachable,
        }
    }

    fn join(self: Impl) void {
        defer os.munmap(self.thread.mapped);

        var spin: u8 = 10;
        while (true) {
            const tid = self.thread.child_tid.load(.SeqCst);
            if (tid == 0) {
                break;
            }

            if (spin > 0) {
                spin -= 1;
                std.atomic.spinLoopHint();
                continue;
            }

            switch (linux.getErrno(linux.futex_wait(
                &self.thread.child_tid.value,
                linux.FUTEX.WAIT,
                tid,
                null,
            ))) {
                .SUCCESS => continue,
                .INTR => continue,
                .AGAIN => continue,
                else => unreachable,
            }
        }
    }
};

fn testThreadName(thread: *Thread) !void {
    const testCases = &[_][]const u8{
        "mythread",
        "b" ** max_name_len,
    };

    inline for (testCases) |tc| {
        try thread.setName(tc);

        var name_buffer: [max_name_len:0]u8 = undefined;

        const name = try thread.getName(&name_buffer);
        if (name) |value| {
            try std.testing.expectEqual(tc.len, value.len);
            try std.testing.expectEqualStrings(tc, value);
        }
    }
}

Test:

setName, getName

State to synchronize detachment of spawner thread to spawned thread Used by the Thread implementations to call the spawned function with the arguments. We can't compile error in the Impl switch statement as its eagerly evaluated. So instead, we compile-error on the methods themselves for platforms which don't support threads. Thread ID Contains all memory which was allocated to bootstrap this thread, including: - Guard page - Stack - TLS segment - Instance All memory is freed upon call to join The allocator used to allocate the thread's memory, which is also used during join to ensure clean-up. The current state of the thread. A meta-data structure used to bootstrap a thread Contains the offset to the new __tls_base. The offset starting from the memory's base. Contains the offset to the stack for the newly spawned thread. The offset is calculated starting from the memory's base. Contains the raw pointer value to the wrapper which holds all arguments for the callback. Function pointer to a wrapping function which will call the user's function upon thread spawn. The above mentioned pointer will be passed to this function pointer as its argument. When a thread is in detached state, we must free all of its memory upon thread completion. However, as this is done while still within the thread, we must first jump back to the main thread's stack or else we end up freeing the stack that we're currently using. Bootstrap procedure, called by the host environment after thread creation. Asks the host to create a new thread for us. Newly created thread will call wasi_tread_start with the thread ID as well as the input arg that was provided to spawnWasiThread Initializes the TLS data segment starting at memory. This is a synthetic function, generated by the linker. Returns a pointer to the base of the TLS data segment for the current thread Returns the size of the TLS segment Returns the alignment of the TLS segment Allows for setting the stack pointer in the WebAssembly module. Returns the current value of the stack pointer Calls munmap(mapped.ptr, mapped.len) then exit(1) without touching the stack (which lives in mapped.ptr). Ported over from musl libc's pthread detached implementation: https://github.com/ifduyue/musl/search?q=__unmapself

test "setName, getName" {
    if (builtin.single_threaded) return error.SkipZigTest;

    const Context = struct {
        start_wait_event: ResetEvent = .{},
        test_done_event: ResetEvent = .{},
        thread_done_event: ResetEvent = .{},

        done: std.atomic.Atomic(bool) = std.atomic.Atomic(bool).init(false),
        thread: Thread = undefined,

run()

        pub fn run(ctx: *@This()) !void {
            // Wait for the main thread to have set the thread field in the context.
            ctx.start_wait_event.wait();

            switch (target.os.tag) {
                .windows => testThreadName(&ctx.thread) catch |err| switch (err) {
                    error.Unsupported => return error.SkipZigTest,
                    else => return err,
                },
                else => try testThreadName(&ctx.thread),
            }

            // Signal our test is done
            ctx.test_done_event.set();

            // wait for the thread to property exit
            ctx.thread_done_event.wait();
        }
    };

    var context = Context{};
    var thread = try spawn(.{}, Context.run, .{&context});

    context.thread = thread;
    context.start_wait_event.set();
    context.test_done_event.wait();

    switch (target.os.tag) {
        .macos, .ios, .watchos, .tvos => {
            const res = thread.setName("foobar");
            try std.testing.expectError(error.Unsupported, res);
        },
        .windows => testThreadName(&thread) catch |err| switch (err) {
            error.Unsupported => return error.SkipZigTest,
            else => return err,
        },
        else => try testThreadName(&thread),
    }

    context.thread_done_event.set();
    thread.join();
}

test {
    // Doesn't use testing.refAllDecls() since that would pull in the compileError spinLoopHint.
    _ = Futex;
    _ = ResetEvent;
    _ = Mutex;
    _ = Semaphore;
    _ = Condition;
    _ = RwLock;
}

fn testIncrementNotify(value: *usize, event: *ResetEvent) void {
    value.* += 1;
    event.set();
}

Test:

Thread.join

test "Thread.join" {
    if (builtin.single_threaded) return error.SkipZigTest;

    var value: usize = 0;
    var event = ResetEvent{};

    const thread = try Thread.spawn(.{}, testIncrementNotify, .{ &value, &event });
    thread.join();

    try std.testing.expectEqual(value, 1);
}

Test:

Thread.detach

test "Thread.detach" {
    if (builtin.single_threaded) return error.SkipZigTest;

    var value: usize = 0;
    var event = ResetEvent{};

    const thread = try Thread.spawn(.{}, testIncrementNotify, .{ &value, &event });
    thread.detach();

    event.wait();
    try std.testing.expectEqual(value, 1);
}