zig/lib/std / array_list.zig

const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const math = std.math;
const Allocator = mem.Allocator;

ArrayList()

A contiguous, growable list of items in memory. This is a wrapper around an array of T values. Initialize with init.

This struct internally stores a std.mem.Allocator for memory management. To manually specify an allocator with each method call see ArrayListUnmanaged.

pub fn ArrayList(comptime T: type) type {
    return ArrayListAligned(T, null);
}

ArrayListAligned()

A contiguous, growable list of arbitrarily aligned items in memory. This is a wrapper around an array of T values aligned to alignment-byte addresses. If the specified alignment is null, then @alignOf(T) is used. Initialize with init.

This struct internally stores a std.mem.Allocator for memory management. To manually specify an allocator with each method call see ArrayListAlignedUnmanaged.

pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
    if (alignment) |a| {
        if (a == @alignOf(T)) {
            return ArrayListAligned(T, null);
        }
    }
    return struct {
        const Self = @This();
        items: Slice,
        capacity: usize,
        allocator: Allocator,

        pub const Slice = if (alignment) |a| ([]align(a) T) else []T;

SentinelSlice()

Contents of the list. Pointers to elements in this slice are **invalid after resizing operations** on the ArrayList unless the operation explicitly either: (1) states otherwise or (2) lists the invalidated pointers.

The allocator used determines how element pointers are invalidated, so the behavior may vary between lists. To avoid illegal behavior, take into account the above paragraph plus the explicit statements given in each method. How many T values this list can hold without allocating additional memory.

        pub fn SentinelSlice(comptime s: T) type {
            return if (alignment) |a| ([:s]align(a) T) else [:s]T;
        }

init()

Deinitialize with deinit or use toOwnedSlice.

        pub fn init(allocator: Allocator) Self {
            return Self{
                .items = &[_]T{},
                .capacity = 0,
                .allocator = allocator,
            };
        }

initCapacity()

Initialize with capacity to hold num elements. The resulting capacity will equal num exactly. Deinitialize with deinit or use toOwnedSlice.

        pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self {
            var self = Self.init(allocator);
            try self.ensureTotalCapacityPrecise(num);
            return self;
        }

deinit()

Release all allocated memory.

        pub fn deinit(self: Self) void {
            if (@sizeOf(T) > 0) {
                self.allocator.free(self.allocatedSlice());
            }
        }

fromOwnedSlice()

ArrayList takes ownership of the passed in slice. The slice must have been allocated with allocator. Deinitialize with deinit or use toOwnedSlice.

        pub fn fromOwnedSlice(allocator: Allocator, slice: Slice) Self {
            return Self{
                .items = slice,
                .capacity = slice.len,
                .allocator = allocator,
            };
        }

fromOwnedSliceSentinel()

ArrayList takes ownership of the passed in slice. The slice must have been allocated with allocator. Deinitialize with deinit or use toOwnedSlice.

        pub fn fromOwnedSliceSentinel(allocator: Allocator, comptime sentinel: T, slice: [:sentinel]T) Self {
            return Self{
                .items = slice,
                .capacity = slice.len + 1,
                .allocator = allocator,
            };
        }

moveToUnmanaged()

Initializes an ArrayListUnmanaged with the items and capacity fields of this ArrayList. Empties this ArrayList.

        pub fn moveToUnmanaged(self: *Self) ArrayListAlignedUnmanaged(T, alignment) {
            const allocator = self.allocator;
            const result = .{ .items = self.items, .capacity = self.capacity };
            self.* = init(allocator);
            return result;
        }

toOwnedSlice()

The caller owns the returned memory. Empties this ArrayList, Its capacity is cleared, making deinit() safe but unnecessary to call.

        pub fn toOwnedSlice(self: *Self) Allocator.Error!Slice {
            const allocator = self.allocator;

            const old_memory = self.allocatedSlice();
            if (allocator.resize(old_memory, self.items.len)) {
                const result = self.items;
                self.* = init(allocator);
                return result;
            }

            const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
            @memcpy(new_memory, self.items);
            @memset(self.items, undefined);
            self.clearAndFree();
            return new_memory;
        }

toOwnedSliceSentinel()

The caller owns the returned memory. Empties this ArrayList.

        pub fn toOwnedSliceSentinel(self: *Self, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
            try self.ensureTotalCapacityPrecise(self.items.len + 1);
            self.appendAssumeCapacity(sentinel);
            const result = try self.toOwnedSlice();
            return result[0 .. result.len - 1 :sentinel];
        }

clone()

Creates a copy of this ArrayList, using the same allocator.

        pub fn clone(self: Self) Allocator.Error!Self {
            var cloned = try Self.initCapacity(self.allocator, self.capacity);
            cloned.appendSliceAssumeCapacity(self.items);
            return cloned;
        }

insert()

Insert item at index n. Moves list[n .. list.len] to higher indices to make room. If n is equal to the length of the list this operation is equivalent to append. This operation is O(N). Invalidates pointers if additional memory is needed.

        pub fn insert(self: *Self, n: usize, item: T) Allocator.Error!void {
            const dst = try self.addManyAt(n, 1);
            dst[0] = item;
        }

insertAssumeCapacity()

Insert item at index n. Moves list[n .. list.len] to higher indices to make room. If n is equal to the length of the list this operation is equivalent to append. This operation is O(N). Asserts that there is enough capacity for the new item.

        pub fn insertAssumeCapacity(self: *Self, n: usize, item: T) void {
            assert(self.items.len < self.capacity);
            self.items.len += 1;

            mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
            self.items[n] = item;
        }

addManyAt()

Add count new elements at position index, which have undefined values. Returns a slice pointing to the newly allocated elements, which becomes invalid after various ArrayList operations. Invalidates pre-existing pointers to elements at and after index. Invalidates all pre-existing element pointers if capacity must be increased to accomodate the new elements.

        pub fn addManyAt(self: *Self, index: usize, count: usize) Allocator.Error![]T {
            const new_len = self.items.len + count;

            if (self.capacity >= new_len)
                return addManyAtAssumeCapacity(self, index, count);

            // Here we avoid copying allocated but unused bytes by
            // attempting a resize in place, and falling back to allocating
            // a new buffer and doing our own copy. With a realloc() call,
            // the allocator implementation would pointlessly copy our
            // extra capacity.
            const new_capacity = growCapacity(self.capacity, new_len);
            const old_memory = self.allocatedSlice();
            if (self.allocator.resize(old_memory, new_capacity)) {
                self.capacity = new_capacity;
                return addManyAtAssumeCapacity(self, index, count);
            }

            // Make a new allocation, avoiding `ensureTotalCapacity` in order
            // to avoid extra memory copies.
            const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
            const to_move = self.items[index..];
            @memcpy(new_memory[0..index], self.items[0..index]);
            @memcpy(new_memory[index + count ..][0..to_move.len], to_move);
            self.allocator.free(old_memory);
            self.items = new_memory[0..new_len];
            self.capacity = new_memory.len;
            // The inserted elements at `new_memory[index..][0..count]` have
            // already been set to `undefined` by memory allocation.
            return new_memory[index..][0..count];
        }

addManyAtAssumeCapacity()

Add count new elements at position index, which have undefined values. Returns a slice pointing to the newly allocated elements, which becomes invalid after various ArrayList operations. Asserts that there is enough capacity for the new elements. Invalidates pre-existing pointers to elements at and after index, but does not invalidate any before that.

        pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
            const new_len = self.items.len + count;
            assert(self.capacity >= new_len);
            const to_move = self.items[index..];
            self.items.len = new_len;
            mem.copyBackwards(T, self.items[index + count ..], to_move);
            const result = self.items[index..][0..count];
            @memset(result, undefined);
            return result;
        }

insertSlice()

Insert slice items at index i by moving list[i .. list.len] to make room. This operation is O(N). Invalidates pre-existing pointers to elements at and after index. Invalidates all pre-existing element pointers if capacity must be increased to accomodate the new elements.

        pub fn insertSlice(
            self: *Self,
            index: usize,
            items: []const T,
        ) Allocator.Error!void {
            const dst = try self.addManyAt(index, items.len);
            @memcpy(dst, items);
        }

replaceRange()

Replace range of elements list[start..][0..len] with new_items. Grows list if len < new_items.len. Shrinks list if len > new_items.len. Invalidates pointers if this ArrayList is resized.

        pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: []const T) Allocator.Error!void {
            const after_range = start + len;
            const range = self.items[start..after_range];

            if (range.len == new_items.len)
                @memcpy(range[0..new_items.len], new_items)
            else if (range.len < new_items.len) {
                const first = new_items[0..range.len];
                const rest = new_items[range.len..];

                @memcpy(range[0..first.len], first);
                try self.insertSlice(after_range, rest);
            } else {
                @memcpy(range[0..new_items.len], new_items);
                const after_subrange = start + new_items.len;

                for (self.items[after_range..], 0..) |item, i| {
                    self.items[after_subrange..][i] = item;
                }

                self.items.len -= len - new_items.len;
            }
        }

append()

Extend the list by 1 element. Allocates more memory as necessary. Invalidates pointers if additional memory is needed.

        pub fn append(self: *Self, item: T) Allocator.Error!void {
            const new_item_ptr = try self.addOne();
            new_item_ptr.* = item;
        }

appendAssumeCapacity()

Extend the list by 1 element, but assert self.capacity is sufficient to hold an additional item. **Does not** invalidate pointers.

        pub fn appendAssumeCapacity(self: *Self, item: T) void {
            const new_item_ptr = self.addOneAssumeCapacity();
            new_item_ptr.* = item;
        }

orderedRemove()

Remove the element at index i, shift elements after index i forward, and return the removed element. Asserts the array has at least one item. Invalidates pointers to end of list. This operation is O(N). This preserves item order. Use swapRemove if order preservation is not important.

        pub fn orderedRemove(self: *Self, i: usize) T {
            const newlen = self.items.len - 1;
            if (newlen == i) return self.pop();

            const old_item = self.items[i];
            for (self.items[i..newlen], 0..) |*b, j| b.* = self.items[i + 1 + j];
            self.items[newlen] = undefined;
            self.items.len = newlen;
            return old_item;
        }

swapRemove()

Removes the element at the specified index and returns it. The empty slot is filled from the end of the list. This operation is O(1). This may not preserve item order. Use orderedRemove if you need to preserve order.

        pub fn swapRemove(self: *Self, i: usize) T {
            if (self.items.len - 1 == i) return self.pop();

            const old_item = self.items[i];
            self.items[i] = self.pop();
            return old_item;
        }

appendSlice()

Append the slice of items to the list. Allocates more memory as necessary. Invalidates pointers if additional memory is needed.

        pub fn appendSlice(self: *Self, items: []const T) Allocator.Error!void {
            try self.ensureUnusedCapacity(items.len);
            self.appendSliceAssumeCapacity(items);
        }

appendSliceAssumeCapacity()

Append the slice of items to the list, asserting the capacity is already enough to store the new items. **Does not** invalidate pointers.

        pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
            const old_len = self.items.len;
            const new_len = old_len + items.len;
            assert(new_len <= self.capacity);
            self.items.len = new_len;
            @memcpy(self.items[old_len..][0..items.len], items);
        }

appendUnalignedSlice()

Append an unaligned slice of items to the list. Allocates more memory as necessary. Only call this function if calling appendSlice instead would be a compile error. Invalidates pointers if additional memory is needed.

        pub fn appendUnalignedSlice(self: *Self, items: []align(1) const T) Allocator.Error!void {
            try self.ensureUnusedCapacity(items.len);
            self.appendUnalignedSliceAssumeCapacity(items);
        }

appendUnalignedSliceAssumeCapacity()

Append the slice of items to the list, asserting the capacity is already enough to store the new items. **Does not** invalidate pointers. Only call this function if calling appendSliceAssumeCapacity instead would be a compile error.

        pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
            const old_len = self.items.len;
            const new_len = old_len + items.len;
            assert(new_len <= self.capacity);
            self.items.len = new_len;
            @memcpy(self.items[old_len..][0..items.len], items);
        }

        pub const Writer = if (T != u8)
            @compileError("The Writer interface is only defined for ArrayList(u8) " ++
                "but the given type is ArrayList(" ++ @typeName(T) ++ ")")
        else
            std.io.Writer(*Self, error{OutOfMemory}, appendWrite);

writer()

Initializes a Writer which will append to the list.

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }

        fn appendWrite(self: *Self, m: []const u8) Allocator.Error!usize {
            try self.appendSlice(m);
            return m.len;
        }

appendNTimes()

Same as append except it returns the number of bytes written, which is always the same as m.len. The purpose of this function existing is to match std.io.Writer API. Invalidates pointers if additional memory is needed. Append a value to the list n times. Allocates more memory as necessary. Invalidates pointers if additional memory is needed. The function is inline so that a comptime-known value parameter will have a more optimal memset codegen in case it has a repeated byte pattern.

        pub inline fn appendNTimes(self: *Self, value: T, n: usize) Allocator.Error!void {
            const old_len = self.items.len;
            try self.resize(self.items.len + n);
            @memset(self.items[old_len..self.items.len], value);
        }

appendNTimesAssumeCapacity()

Append a value to the list n times. Asserts the capacity is enough. **Does not** invalidate pointers. The function is inline so that a comptime-known value parameter will have a more optimal memset codegen in case it has a repeated byte pattern.

        pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
            const new_len = self.items.len + n;
            assert(new_len <= self.capacity);
            @memset(self.items.ptr[self.items.len..new_len], value);
            self.items.len = new_len;
        }

resize()

Adjust the list's length to new_len. Does not initialize added items if any. Invalidates pointers if additional memory is needed.

        pub fn resize(self: *Self, new_len: usize) Allocator.Error!void {
            try self.ensureTotalCapacity(new_len);
            self.items.len = new_len;
        }

shrinkAndFree()

Reduce allocated capacity to new_len. May invalidate element pointers.

        pub fn shrinkAndFree(self: *Self, new_len: usize) void {
            var unmanaged = self.moveToUnmanaged();
            unmanaged.shrinkAndFree(self.allocator, new_len);
            self.* = unmanaged.toManaged(self.allocator);
        }

shrinkRetainingCapacity()

Reduce length to new_len. Invalidates pointers for the elements items[new_len..].

        pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
            assert(new_len <= self.items.len);
            self.items.len = new_len;
        }

clearRetainingCapacity()

Invalidates all element pointers.

        pub fn clearRetainingCapacity(self: *Self) void {
            self.items.len = 0;
        }

clearAndFree()

Invalidates all element pointers.

        pub fn clearAndFree(self: *Self) void {
            self.allocator.free(self.allocatedSlice());
            self.items.len = 0;
            self.capacity = 0;
        }

ensureTotalCapacity()

Modify the array so that it can hold at least new_capacity items. Invalidates pointers if additional memory is needed.

        pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) Allocator.Error!void {
            if (@sizeOf(T) == 0) {
                self.capacity = math.maxInt(usize);
                return;
            }

            if (self.capacity >= new_capacity) return;

            const better_capacity = growCapacity(self.capacity, new_capacity);
            return self.ensureTotalCapacityPrecise(better_capacity);
        }

ensureTotalCapacityPrecise()

Modify the array so that it can hold new_capacity items. Like ensureTotalCapacity, but the resulting capacity is guaranteed to be equal to new_capacity. Invalidates pointers if additional memory is needed.

        pub fn ensureTotalCapacityPrecise(self: *Self, new_capacity: usize) Allocator.Error!void {
            if (@sizeOf(T) == 0) {
                self.capacity = math.maxInt(usize);
                return;
            }

            if (self.capacity >= new_capacity) return;

            // Here we avoid copying allocated but unused bytes by
            // attempting a resize in place, and falling back to allocating
            // a new buffer and doing our own copy. With a realloc() call,
            // the allocator implementation would pointlessly copy our
            // extra capacity.
            const old_memory = self.allocatedSlice();
            if (self.allocator.resize(old_memory, new_capacity)) {
                self.capacity = new_capacity;
            } else {
                const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
                @memcpy(new_memory[0..self.items.len], self.items);
                self.allocator.free(old_memory);
                self.items.ptr = new_memory.ptr;
                self.capacity = new_memory.len;
            }
        }

ensureUnusedCapacity()

Modify the array so that it can hold at least additional_count **more** items. Invalidates pointers if additional memory is needed.

        pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) Allocator.Error!void {
            return self.ensureTotalCapacity(self.items.len + additional_count);
        }

expandToCapacity()

Increases the array's length to match the full capacity that is already allocated. The new elements have undefined values. **Does not** invalidate pointers.

        pub fn expandToCapacity(self: *Self) void {
            self.items.len = self.capacity;
        }

addOne()

Increase length by 1, returning pointer to the new item. The returned pointer becomes invalid when the list resized.

        pub fn addOne(self: *Self) Allocator.Error!*T {
            try self.ensureTotalCapacity(self.items.len + 1);
            return self.addOneAssumeCapacity();
        }

addOneAssumeCapacity()

Increase length by 1, returning pointer to the new item. Asserts that there is already space for the new item without allocating more. The returned pointer becomes invalid when the list is resized. **Does not** invalidate element pointers.

        pub fn addOneAssumeCapacity(self: *Self) *T {
            assert(self.items.len < self.capacity);
            self.items.len += 1;
            return &self.items[self.items.len - 1];
        }

addManyAsArray()

Resize the array, adding n new elements, which have undefined values. The return value is an array pointing to the newly allocated elements. The returned pointer becomes invalid when the list is resized. Resizes list if self.capacity is not large enough.

        pub fn addManyAsArray(self: *Self, comptime n: usize) Allocator.Error!*[n]T {
            const prev_len = self.items.len;
            try self.resize(self.items.len + n);
            return self.items[prev_len..][0..n];
        }

addManyAsArrayAssumeCapacity()

Resize the array, adding n new elements, which have undefined values. The return value is an array pointing to the newly allocated elements. Asserts that there is already space for the new item without allocating more. **Does not** invalidate element pointers. The returned pointer becomes invalid when the list is resized.

        pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
            assert(self.items.len + n <= self.capacity);
            const prev_len = self.items.len;
            self.items.len += n;
            return self.items[prev_len..][0..n];
        }

addManyAsSlice()

Resize the array, adding n new elements, which have undefined values. The return value is a slice pointing to the newly allocated elements. The returned pointer becomes invalid when the list is resized. Resizes list if self.capacity is not large enough.

        pub fn addManyAsSlice(self: *Self, n: usize) Allocator.Error![]T {
            const prev_len = self.items.len;
            try self.resize(self.items.len + n);
            return self.items[prev_len..][0..n];
        }

addManyAsSliceAssumeCapacity()

Resize the array, adding n new elements, which have undefined values. The return value is a slice pointing to the newly allocated elements. Asserts that there is already space for the new item without allocating more. **Does not** invalidate element pointers. The returned pointer becomes invalid when the list is resized.

        pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T {
            assert(self.items.len + n <= self.capacity);
            const prev_len = self.items.len;
            self.items.len += n;
            return self.items[prev_len..][0..n];
        }

pop()

Remove and return the last element from the list. Asserts the list has at least one item. Invalidates pointers to the removed element.

        pub fn pop(self: *Self) T {
            const val = self.items[self.items.len - 1];
            self.items.len -= 1;
            return val;
        }

popOrNull()

Remove and return the last element from the list, or return null if list is empty. Invalidates pointers to the removed element, if any.

        pub fn popOrNull(self: *Self) ?T {
            if (self.items.len == 0) return null;
            return self.pop();
        }

allocatedSlice()

Returns a slice of all the items plus the extra capacity, whose memory contents are undefined.

        pub fn allocatedSlice(self: Self) Slice {
            // `items.len` is the length, not the capacity.
            return self.items.ptr[0..self.capacity];
        }

unusedCapacitySlice()

Returns a slice of only the extra capacity after items. This can be useful for writing directly into an ArrayList. Note that such an operation must be followed up with a direct modification of self.items.len.

        pub fn unusedCapacitySlice(self: Self) Slice {
            return self.allocatedSlice()[self.items.len..];
        }

getLast()

Return the last element from the list. Asserts the list has at least one item.

        pub fn getLast(self: Self) T {
            const val = self.items[self.items.len - 1];
            return val;
        }

getLastOrNull()

Return the last element from the list, or return null if list is empty.

        pub fn getLastOrNull(self: Self) ?T {
            if (self.items.len == 0) return null;
            return self.getLast();
        }
    };
}

ArrayListUnmanaged()

An ArrayList, but the allocator is passed as a parameter to the relevant functions rather than stored in the struct itself. The same allocator **must** be used throughout the entire lifetime of an ArrayListUnmanaged. Initialize directly or with initCapacity, and deinitialize with deinit or use toOwnedSlice.

pub fn ArrayListUnmanaged(comptime T: type) type {
    return ArrayListAlignedUnmanaged(T, null);
}

ArrayListAlignedUnmanaged()

An ArrayListAligned, but the allocator is passed as a parameter to the relevant functions rather than stored in the struct itself. The same allocator **must** be used throughout the entire lifetime of an ArrayListAlignedUnmanaged. Initialize directly or with initCapacity, and deinitialize with deinit or use toOwnedSlice.

pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
    if (alignment) |a| {
        if (a == @alignOf(T)) {
            return ArrayListAlignedUnmanaged(T, null);
        }
    }
    return struct {
        const Self = @This();
        items: Slice = &[_]T{},
        capacity: usize = 0,

        pub const Slice = if (alignment) |a| ([]align(a) T) else []T;

SentinelSlice()

Contents of the list. Pointers to elements in this slice are **invalid after resizing operations** on the ArrayList unless the operation explicitly either: (1) states otherwise or (2) lists the invalidated pointers.

The allocator used determines how element pointers are invalidated, so the behavior may vary between lists. To avoid illegal behavior, take into account the above paragraph plus the explicit statements given in each method. How many T values this list can hold without allocating additional memory.

        pub fn SentinelSlice(comptime s: T) type {
            return if (alignment) |a| ([:s]align(a) T) else [:s]T;
        }

initCapacity()

Initialize with capacity to hold num elements. The resulting capacity will equal num exactly. Deinitialize with deinit or use toOwnedSlice.

        pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self {
            var self = Self{};
            try self.ensureTotalCapacityPrecise(allocator, num);
            return self;
        }

deinit()

Release all allocated memory.

        pub fn deinit(self: *Self, allocator: Allocator) void {
            allocator.free(self.allocatedSlice());
            self.* = undefined;
        }

toManaged()

Convert this list into an analogous memory-managed one. The returned list has ownership of the underlying memory.

        pub fn toManaged(self: *Self, allocator: Allocator) ArrayListAligned(T, alignment) {
            return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
        }

fromOwnedSlice()

ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been allocated with allocator. Deinitialize with deinit or use toOwnedSlice.

        pub fn fromOwnedSlice(slice: Slice) Self {
            return Self{
                .items = slice,
                .capacity = slice.len,
            };
        }

fromOwnedSliceSentinel()

ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been allocated with allocator. Deinitialize with deinit or use toOwnedSlice.

        pub fn fromOwnedSliceSentinel(comptime sentinel: T, slice: [:sentinel]T) Self {
            return Self{
                .items = slice,
                .capacity = slice.len + 1,
            };
        }

toOwnedSlice()

The caller owns the returned memory. Empties this ArrayList. Its capacity is cleared, making deinit() safe but unnecessary to call.

        pub fn toOwnedSlice(self: *Self, allocator: Allocator) Allocator.Error!Slice {
            const old_memory = self.allocatedSlice();
            if (allocator.resize(old_memory, self.items.len)) {
                const result = self.items;
                self.* = .{};
                return result;
            }

            const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
            @memcpy(new_memory, self.items);
            @memset(self.items, undefined);
            self.clearAndFree(allocator);
            return new_memory;
        }

toOwnedSliceSentinel()

The caller owns the returned memory. ArrayList becomes empty.

        pub fn toOwnedSliceSentinel(self: *Self, allocator: Allocator, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
            try self.ensureTotalCapacityPrecise(allocator, self.items.len + 1);
            self.appendAssumeCapacity(sentinel);
            const result = try self.toOwnedSlice(allocator);
            return result[0 .. result.len - 1 :sentinel];
        }

clone()

Creates a copy of this ArrayList.

        pub fn clone(self: Self, allocator: Allocator) Allocator.Error!Self {
            var cloned = try Self.initCapacity(allocator, self.capacity);
            cloned.appendSliceAssumeCapacity(self.items);
            return cloned;
        }

insert()

Insert item at index n. Moves list[n .. list.len] to higher indices to make room. If n is equal to the length of the list this operation is equivalent to append. This operation is O(N). Invalidates pointers if additional memory is needed.

        pub fn insert(self: *Self, allocator: Allocator, n: usize, item: T) Allocator.Error!void {
            const dst = try self.addManyAt(allocator, n, 1);
            dst[0] = item;
        }

insertAssumeCapacity()

Insert item at index n. Moves list[n .. list.len] to higher indices to make room. If n is equal to the length of the list this operation is equivalent to append. This operation is O(N). Asserts that there is enough capacity for the new item.

        pub fn insertAssumeCapacity(self: *Self, n: usize, item: T) void {
            assert(self.items.len < self.capacity);
            self.items.len += 1;

            mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
            self.items[n] = item;
        }

addManyAt()

Add count new elements at position index, which have undefined values. Returns a slice pointing to the newly allocated elements, which becomes invalid after various ArrayList operations. Invalidates pre-existing pointers to elements at and after index. Invalidates all pre-existing element pointers if capacity must be increased to accomodate the new elements.

        pub fn addManyAt(
            self: *Self,
            allocator: Allocator,
            index: usize,
            count: usize,
        ) Allocator.Error![]T {
            var managed = self.toManaged(allocator);
            defer self.* = managed.moveToUnmanaged();
            return managed.addManyAt(index, count);
        }

addManyAtAssumeCapacity()

Add count new elements at position index, which have undefined values. Returns a slice pointing to the newly allocated elements, which becomes invalid after various ArrayList operations. Asserts that there is enough capacity for the new elements. Invalidates pre-existing pointers to elements at and after index, but does not invalidate any before that.

        pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
            const new_len = self.items.len + count;
            assert(self.capacity >= new_len);
            const to_move = self.items[index..];
            self.items.len = new_len;
            mem.copyBackwards(T, self.items[index + count ..], to_move);
            const result = self.items[index..][0..count];
            @memset(result, undefined);
            return result;
        }

insertSlice()

Insert slice items at index i by moving list[i .. list.len] to make room. This operation is O(N). Invalidates pre-existing pointers to elements at and after index. Invalidates all pre-existing element pointers if capacity must be increased to accomodate the new elements.

        pub fn insertSlice(
            self: *Self,
            allocator: Allocator,
            index: usize,
            items: []const T,
        ) Allocator.Error!void {
            const dst = try self.addManyAt(
                allocator,
                index,
                items.len,
            );
            @memcpy(dst, items);
        }

replaceRange()

Replace range of elements list[start..][0..len] with new_items Grows list if len < new_items.len. Shrinks list if len > new_items.len Invalidates pointers if this ArrayList is resized.

        pub fn replaceRange(
            self: *Self,
            allocator: Allocator,
            start: usize,
            len: usize,
            new_items: []const T,
        ) Allocator.Error!void {
            var managed = self.toManaged(allocator);
            defer self.* = managed.moveToUnmanaged();
            try managed.replaceRange(start, len, new_items);
        }

append()

Extend the list by 1 element. Allocates more memory as necessary. Invalidates pointers if additional memory is needed.

        pub fn append(self: *Self, allocator: Allocator, item: T) Allocator.Error!void {
            const new_item_ptr = try self.addOne(allocator);
            new_item_ptr.* = item;
        }

appendAssumeCapacity()

Extend the list by 1 element, but asserting self.capacity is sufficient to hold an additional item.

        pub fn appendAssumeCapacity(self: *Self, item: T) void {
            const new_item_ptr = self.addOneAssumeCapacity();
            new_item_ptr.* = item;
        }

orderedRemove()

Remove the element at index i from the list and return its value. Asserts the array has at least one item. Invalidates pointers to last element. This operation is O(N).

        pub fn orderedRemove(self: *Self, i: usize) T {
            const newlen = self.items.len - 1;
            if (newlen == i) return self.pop();

            const old_item = self.items[i];
            for (self.items[i..newlen], 0..) |*b, j| b.* = self.items[i + 1 + j];
            self.items[newlen] = undefined;
            self.items.len = newlen;
            return old_item;
        }

swapRemove()

Removes the element at the specified index and returns it. The empty slot is filled from the end of the list. Invalidates pointers to last element. This operation is O(1).

        pub fn swapRemove(self: *Self, i: usize) T {
            if (self.items.len - 1 == i) return self.pop();

            const old_item = self.items[i];
            self.items[i] = self.pop();
            return old_item;
        }

appendSlice()

Append the slice of items to the list. Allocates more memory as necessary. Invalidates pointers if additional memory is needed.

        pub fn appendSlice(self: *Self, allocator: Allocator, items: []const T) Allocator.Error!void {
            try self.ensureUnusedCapacity(allocator, items.len);
            self.appendSliceAssumeCapacity(items);
        }

appendSliceAssumeCapacity()

Append the slice of items to the list, asserting the capacity is enough to store the new items.

        pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
            const old_len = self.items.len;
            const new_len = old_len + items.len;
            assert(new_len <= self.capacity);
            self.items.len = new_len;
            @memcpy(self.items[old_len..][0..items.len], items);
        }

appendUnalignedSlice()

Append the slice of items to the list. Allocates more memory as necessary. Only call this function if a call to appendSlice instead would be a compile error. Invalidates pointers if additional memory is needed.

        pub fn appendUnalignedSlice(self: *Self, allocator: Allocator, items: []align(1) const T) Allocator.Error!void {
            try self.ensureUnusedCapacity(allocator, items.len);
            self.appendUnalignedSliceAssumeCapacity(items);
        }

appendUnalignedSliceAssumeCapacity()

Append an unaligned slice of items to the list, asserting the capacity is enough to store the new items. Only call this function if a call to appendSliceAssumeCapacity instead would be a compile error.

        pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
            const old_len = self.items.len;
            const new_len = old_len + items.len;
            assert(new_len <= self.capacity);
            self.items.len = new_len;
            @memcpy(self.items[old_len..][0..items.len], items);
        }

        pub const WriterContext = struct {
            self: *Self,
            allocator: Allocator,
        };

        pub const Writer = if (T != u8)
            @compileError("The Writer interface is only defined for ArrayList(u8) " ++
                "but the given type is ArrayList(" ++ @typeName(T) ++ ")")
        else
            std.io.Writer(WriterContext, error{OutOfMemory}, appendWrite);

writer()

Initializes a Writer which will append to the list.

        pub fn writer(self: *Self, allocator: Allocator) Writer {
            return .{ .context = .{ .self = self, .allocator = allocator } };
        }

        fn appendWrite(context: WriterContext, m: []const u8) Allocator.Error!usize {
            try context.self.appendSlice(context.allocator, m);
            return m.len;
        }

appendNTimes()

Same as append except it returns the number of bytes written, which is always the same as m.len. The purpose of this function existing is to match std.io.Writer API. Invalidates pointers if additional memory is needed. Append a value to the list n times. Allocates more memory as necessary. Invalidates pointers if additional memory is needed. The function is inline so that a comptime-known value parameter will have a more optimal memset codegen in case it has a repeated byte pattern.

        pub inline fn appendNTimes(self: *Self, allocator: Allocator, value: T, n: usize) Allocator.Error!void {
            const old_len = self.items.len;
            try self.resize(allocator, self.items.len + n);
            @memset(self.items[old_len..self.items.len], value);
        }

appendNTimesAssumeCapacity()

Append a value to the list n times. **Does not** invalidate pointers. Asserts the capacity is enough. The function is inline so that a comptime-known value parameter will have a more optimal memset codegen in case it has a repeated byte pattern.

        pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
            const new_len = self.items.len + n;
            assert(new_len <= self.capacity);
            @memset(self.items.ptr[self.items.len..new_len], value);
            self.items.len = new_len;
        }

resize()

Adjust the list's length to new_len. Does not initialize added items, if any. Invalidates pointers if additional memory is needed.

        pub fn resize(self: *Self, allocator: Allocator, new_len: usize) Allocator.Error!void {
            try self.ensureTotalCapacity(allocator, new_len);
            self.items.len = new_len;
        }

shrinkAndFree()

Reduce allocated capacity to new_len. May invalidate element pointers.

        pub fn shrinkAndFree(self: *Self, allocator: Allocator, new_len: usize) void {
            assert(new_len <= self.items.len);

            if (@sizeOf(T) == 0) {
                self.items.len = new_len;
                return;
            }

            const old_memory = self.allocatedSlice();
            if (allocator.resize(old_memory, new_len)) {
                self.capacity = new_len;
                self.items.len = new_len;
                return;
            }

            const new_memory = allocator.alignedAlloc(T, alignment, new_len) catch |e| switch (e) {
                error.OutOfMemory => {
                    // No problem, capacity is still correct then.
                    self.items.len = new_len;
                    return;
                },
            };

            @memcpy(new_memory, self.items[0..new_len]);
            allocator.free(old_memory);
            self.items = new_memory;
            self.capacity = new_memory.len;
        }

shrinkRetainingCapacity()

Reduce length to new_len. Invalidates pointers to elements items[new_len..]. Keeps capacity the same.

        pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
            assert(new_len <= self.items.len);
            self.items.len = new_len;
        }

clearRetainingCapacity()

Invalidates all element pointers.

        pub fn clearRetainingCapacity(self: *Self) void {
            self.items.len = 0;
        }

clearAndFree()

Invalidates all element pointers.

        pub fn clearAndFree(self: *Self, allocator: Allocator) void {
            allocator.free(self.allocatedSlice());
            self.items.len = 0;
            self.capacity = 0;
        }

ensureTotalCapacity()

Modify the array so that it can hold at least new_capacity items. Invalidates pointers if additional memory is needed.

        pub fn ensureTotalCapacity(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
            if (self.capacity >= new_capacity) return;

            var better_capacity = growCapacity(self.capacity, new_capacity);
            return self.ensureTotalCapacityPrecise(allocator, better_capacity);
        }

ensureTotalCapacityPrecise()

Modify the array so that it can hold new_capacity items. Like ensureTotalCapacity, but the resulting capacity is guaranteed to be equal to new_capacity. Invalidates pointers if additional memory is needed.

        pub fn ensureTotalCapacityPrecise(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
            if (@sizeOf(T) == 0) {
                self.capacity = math.maxInt(usize);
                return;
            }

            if (self.capacity >= new_capacity) return;

            // Here we avoid copying allocated but unused bytes by
            // attempting a resize in place, and falling back to allocating
            // a new buffer and doing our own copy. With a realloc() call,
            // the allocator implementation would pointlessly copy our
            // extra capacity.
            const old_memory = self.allocatedSlice();
            if (allocator.resize(old_memory, new_capacity)) {
                self.capacity = new_capacity;
            } else {
                const new_memory = try allocator.alignedAlloc(T, alignment, new_capacity);
                @memcpy(new_memory[0..self.items.len], self.items);
                allocator.free(old_memory);
                self.items.ptr = new_memory.ptr;
                self.capacity = new_memory.len;
            }
        }

ensureUnusedCapacity()

Modify the array so that it can hold at least additional_count **more** items. Invalidates pointers if additional memory is needed.

        pub fn ensureUnusedCapacity(
            self: *Self,
            allocator: Allocator,
            additional_count: usize,
        ) Allocator.Error!void {
            return self.ensureTotalCapacity(allocator, self.items.len + additional_count);
        }

expandToCapacity()

Increases the array's length to match the full capacity that is already allocated. The new elements have undefined values. **Does not** invalidate pointers.

        pub fn expandToCapacity(self: *Self) void {
            self.items.len = self.capacity;
        }

addOne()

Increase length by 1, returning pointer to the new item. The returned pointer becomes invalid when the list resized.

        pub fn addOne(self: *Self, allocator: Allocator) Allocator.Error!*T {
            const newlen = self.items.len + 1;
            try self.ensureTotalCapacity(allocator, newlen);
            return self.addOneAssumeCapacity();
        }

addOneAssumeCapacity()

Increase length by 1, returning pointer to the new item. Asserts that there is already space for the new item without allocating more. **Does not** invalidate pointers. The returned pointer becomes invalid when the list resized.

        pub fn addOneAssumeCapacity(self: *Self) *T {
            assert(self.items.len < self.capacity);

            self.items.len += 1;
            return &self.items[self.items.len - 1];
        }

addManyAsArray()

Resize the array, adding n new elements, which have undefined values. The return value is an array pointing to the newly allocated elements. The returned pointer becomes invalid when the list is resized.

        pub fn addManyAsArray(self: *Self, allocator: Allocator, comptime n: usize) Allocator.Error!*[n]T {
            const prev_len = self.items.len;
            try self.resize(allocator, self.items.len + n);
            return self.items[prev_len..][0..n];
        }

addManyAsArrayAssumeCapacity()

Resize the array, adding n new elements, which have undefined values. The return value is an array pointing to the newly allocated elements. Asserts that there is already space for the new item without allocating more. **Does not** invalidate pointers. The returned pointer becomes invalid when the list is resized.

        pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
            assert(self.items.len + n <= self.capacity);
            const prev_len = self.items.len;
            self.items.len += n;
            return self.items[prev_len..][0..n];
        }

addManyAsSlice()

Resize the array, adding n new elements, which have undefined values. The return value is a slice pointing to the newly allocated elements. The returned pointer becomes invalid when the list is resized. Resizes list if self.capacity is not large enough.

        pub fn addManyAsSlice(self: *Self, allocator: Allocator, n: usize) Allocator.Error![]T {
            const prev_len = self.items.len;
            try self.resize(allocator, self.items.len + n);
            return self.items[prev_len..][0..n];
        }

addManyAsSliceAssumeCapacity()

Resize the array, adding n new elements, which have undefined values. The return value is a slice pointing to the newly allocated elements. Asserts that there is already space for the new item without allocating more. **Does not** invalidate element pointers. The returned pointer becomes invalid when the list is resized.

        pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T {
            assert(self.items.len + n <= self.capacity);
            const prev_len = self.items.len;
            self.items.len += n;
            return self.items[prev_len..][0..n];
        }

pop()

Remove and return the last element from the list. Asserts the list has at least one item. Invalidates pointers to last element.

        pub fn pop(self: *Self) T {
            const val = self.items[self.items.len - 1];
            self.items.len -= 1;
            return val;
        }

popOrNull()

Remove and return the last element from the list. If the list is empty, returns null. Invalidates pointers to last element.

        pub fn popOrNull(self: *Self) ?T {
            if (self.items.len == 0) return null;
            return self.pop();
        }

allocatedSlice()

Returns a slice of all the items plus the extra capacity, whose memory contents are undefined.

        pub fn allocatedSlice(self: Self) Slice {
            return self.items.ptr[0..self.capacity];
        }

unusedCapacitySlice()

Returns a slice of only the extra capacity after items. This can be useful for writing directly into an ArrayList. Note that such an operation must be followed up with a direct modification of self.items.len.

        pub fn unusedCapacitySlice(self: Self) Slice {
            return self.allocatedSlice()[self.items.len..];
        }

getLast()

Return the last element from the list. Asserts the list has at least one item.

        pub fn getLast(self: Self) T {
            const val = self.items[self.items.len - 1];
            return val;
        }

getLastOrNull()

Return the last element from the list, or return null if list is empty.

        pub fn getLastOrNull(self: Self) ?T {
            if (self.items.len == 0) return null;
            return self.getLast();
        }
    };
}

fn growCapacity(current: usize, minimum: usize) usize {
    var new = current;
    while (true) {
        new +|= new / 2 + 8;
        if (new >= minimum)
            return new;
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.init

Called when memory growth is necessary. Returns a capacity larger than minimum that grows super-linearly.

test "std.ArrayList/ArrayListUnmanaged.init" {
    {
        var list = ArrayList(i32).init(testing.allocator);
        defer list.deinit();

        try testing.expect(list.items.len == 0);
        try testing.expect(list.capacity == 0);
    }

    {
        var list = ArrayListUnmanaged(i32){};

        try testing.expect(list.items.len == 0);
        try testing.expect(list.capacity == 0);
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.initCapacity

test "std.ArrayList/ArrayListUnmanaged.initCapacity" {
    const a = testing.allocator;
    {
        var list = try ArrayList(i8).initCapacity(a, 200);
        defer list.deinit();
        try testing.expect(list.items.len == 0);
        try testing.expect(list.capacity >= 200);
    }
    {
        var list = try ArrayListUnmanaged(i8).initCapacity(a, 200);
        defer list.deinit(a);
        try testing.expect(list.items.len == 0);
        try testing.expect(list.capacity >= 200);
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.clone

test "std.ArrayList/ArrayListUnmanaged.clone" {
    const a = testing.allocator;
    {
        var array = ArrayList(i32).init(a);
        try array.append(-1);
        try array.append(3);
        try array.append(5);

        const cloned = try array.clone();
        defer cloned.deinit();

        try testing.expectEqualSlices(i32, array.items, cloned.items);
        try testing.expectEqual(array.allocator, cloned.allocator);
        try testing.expect(cloned.capacity >= array.capacity);

        array.deinit();

        try testing.expectEqual(@as(i32, -1), cloned.items[0]);
        try testing.expectEqual(@as(i32, 3), cloned.items[1]);
        try testing.expectEqual(@as(i32, 5), cloned.items[2]);
    }
    {
        var array = ArrayListUnmanaged(i32){};
        try array.append(a, -1);
        try array.append(a, 3);
        try array.append(a, 5);

        var cloned = try array.clone(a);
        defer cloned.deinit(a);

        try testing.expectEqualSlices(i32, array.items, cloned.items);
        try testing.expect(cloned.capacity >= array.capacity);

        array.deinit(a);

        try testing.expectEqual(@as(i32, -1), cloned.items[0]);
        try testing.expectEqual(@as(i32, 3), cloned.items[1]);
        try testing.expectEqual(@as(i32, 5), cloned.items[2]);
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.basic

test "std.ArrayList/ArrayListUnmanaged.basic" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        {
            var i: usize = 0;
            while (i < 10) : (i += 1) {
                list.append(@as(i32, @intCast(i + 1))) catch unreachable;
            }
        }

        {
            var i: usize = 0;
            while (i < 10) : (i += 1) {
                try testing.expect(list.items[i] == @as(i32, @intCast(i + 1)));
            }
        }

        for (list.items, 0..) |v, i| {
            try testing.expect(v == @as(i32, @intCast(i + 1)));
        }

        try testing.expect(list.pop() == 10);
        try testing.expect(list.items.len == 9);

        list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
        try testing.expect(list.items.len == 12);
        try testing.expect(list.pop() == 3);
        try testing.expect(list.pop() == 2);
        try testing.expect(list.pop() == 1);
        try testing.expect(list.items.len == 9);

        var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 };
        list.appendUnalignedSlice(&unaligned) catch unreachable;
        try testing.expect(list.items.len == 12);
        try testing.expect(list.pop() == 6);
        try testing.expect(list.pop() == 5);
        try testing.expect(list.pop() == 4);
        try testing.expect(list.items.len == 9);

        list.appendSlice(&[_]i32{}) catch unreachable;
        try testing.expect(list.items.len == 9);

        // can only set on indices < self.items.len
        list.items[7] = 33;
        list.items[8] = 42;

        try testing.expect(list.pop() == 42);
        try testing.expect(list.pop() == 33);
    }
    {
        var list = ArrayListUnmanaged(i32){};
        defer list.deinit(a);

        {
            var i: usize = 0;
            while (i < 10) : (i += 1) {
                list.append(a, @as(i32, @intCast(i + 1))) catch unreachable;
            }
        }

        {
            var i: usize = 0;
            while (i < 10) : (i += 1) {
                try testing.expect(list.items[i] == @as(i32, @intCast(i + 1)));
            }
        }

        for (list.items, 0..) |v, i| {
            try testing.expect(v == @as(i32, @intCast(i + 1)));
        }

        try testing.expect(list.pop() == 10);
        try testing.expect(list.items.len == 9);

        list.appendSlice(a, &[_]i32{ 1, 2, 3 }) catch unreachable;
        try testing.expect(list.items.len == 12);
        try testing.expect(list.pop() == 3);
        try testing.expect(list.pop() == 2);
        try testing.expect(list.pop() == 1);
        try testing.expect(list.items.len == 9);

        var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 };
        list.appendUnalignedSlice(a, &unaligned) catch unreachable;
        try testing.expect(list.items.len == 12);
        try testing.expect(list.pop() == 6);
        try testing.expect(list.pop() == 5);
        try testing.expect(list.pop() == 4);
        try testing.expect(list.items.len == 9);

        list.appendSlice(a, &[_]i32{}) catch unreachable;
        try testing.expect(list.items.len == 9);

        // can only set on indices < self.items.len
        list.items[7] = 33;
        list.items[8] = 42;

        try testing.expect(list.pop() == 42);
        try testing.expect(list.pop() == 33);
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.appendNTimes

test "std.ArrayList/ArrayListUnmanaged.appendNTimes" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.appendNTimes(2, 10);
        try testing.expectEqual(@as(usize, 10), list.items.len);
        for (list.items) |element| {
            try testing.expectEqual(@as(i32, 2), element);
        }
    }
    {
        var list = ArrayListUnmanaged(i32){};
        defer list.deinit(a);

        try list.appendNTimes(a, 2, 10);
        try testing.expectEqual(@as(usize, 10), list.items.len);
        for (list.items) |element| {
            try testing.expectEqual(@as(i32, 2), element);
        }
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.appendNTimes with failing allocator

test "std.ArrayList/ArrayListUnmanaged.appendNTimes with failing allocator" {
    const a = testing.failing_allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
    }
    {
        var list = ArrayListUnmanaged(i32){};
        defer list.deinit(a);
        try testing.expectError(error.OutOfMemory, list.appendNTimes(a, 2, 10));
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.orderedRemove

test "std.ArrayList/ArrayListUnmanaged.orderedRemove" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.append(1);
        try list.append(2);
        try list.append(3);
        try list.append(4);
        try list.append(5);
        try list.append(6);
        try list.append(7);

        //remove from middle
        try testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
        try testing.expectEqual(@as(i32, 5), list.items[3]);
        try testing.expectEqual(@as(usize, 6), list.items.len);

        //remove from end
        try testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
        try testing.expectEqual(@as(usize, 5), list.items.len);

        //remove from front
        try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
        try testing.expectEqual(@as(i32, 2), list.items[0]);
        try testing.expectEqual(@as(usize, 4), list.items.len);
    }
    {
        var list = ArrayListUnmanaged(i32){};
        defer list.deinit(a);

        try list.append(a, 1);
        try list.append(a, 2);
        try list.append(a, 3);
        try list.append(a, 4);
        try list.append(a, 5);
        try list.append(a, 6);
        try list.append(a, 7);

        //remove from middle
        try testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
        try testing.expectEqual(@as(i32, 5), list.items[3]);
        try testing.expectEqual(@as(usize, 6), list.items.len);

        //remove from end
        try testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
        try testing.expectEqual(@as(usize, 5), list.items.len);

        //remove from front
        try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
        try testing.expectEqual(@as(i32, 2), list.items[0]);
        try testing.expectEqual(@as(usize, 4), list.items.len);
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.swapRemove

test "std.ArrayList/ArrayListUnmanaged.swapRemove" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.append(1);
        try list.append(2);
        try list.append(3);
        try list.append(4);
        try list.append(5);
        try list.append(6);
        try list.append(7);

        //remove from middle
        try testing.expect(list.swapRemove(3) == 4);
        try testing.expect(list.items[3] == 7);
        try testing.expect(list.items.len == 6);

        //remove from end
        try testing.expect(list.swapRemove(5) == 6);
        try testing.expect(list.items.len == 5);

        //remove from front
        try testing.expect(list.swapRemove(0) == 1);
        try testing.expect(list.items[0] == 5);
        try testing.expect(list.items.len == 4);
    }
    {
        var list = ArrayListUnmanaged(i32){};
        defer list.deinit(a);

        try list.append(a, 1);
        try list.append(a, 2);
        try list.append(a, 3);
        try list.append(a, 4);
        try list.append(a, 5);
        try list.append(a, 6);
        try list.append(a, 7);

        //remove from middle
        try testing.expect(list.swapRemove(3) == 4);
        try testing.expect(list.items[3] == 7);
        try testing.expect(list.items.len == 6);

        //remove from end
        try testing.expect(list.swapRemove(5) == 6);
        try testing.expect(list.items.len == 5);

        //remove from front
        try testing.expect(list.swapRemove(0) == 1);
        try testing.expect(list.items[0] == 5);
        try testing.expect(list.items.len == 4);
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.insert

test "std.ArrayList/ArrayListUnmanaged.insert" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.insert(0, 1);
        try list.append(2);
        try list.insert(2, 3);
        try list.insert(0, 5);
        try testing.expect(list.items[0] == 5);
        try testing.expect(list.items[1] == 1);
        try testing.expect(list.items[2] == 2);
        try testing.expect(list.items[3] == 3);
    }
    {
        var list = ArrayListUnmanaged(i32){};
        defer list.deinit(a);

        try list.insert(a, 0, 1);
        try list.append(a, 2);
        try list.insert(a, 2, 3);
        try list.insert(a, 0, 5);
        try testing.expect(list.items[0] == 5);
        try testing.expect(list.items[1] == 1);
        try testing.expect(list.items[2] == 2);
        try testing.expect(list.items[3] == 3);
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.insertSlice

test "std.ArrayList/ArrayListUnmanaged.insertSlice" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.append(1);
        try list.append(2);
        try list.append(3);
        try list.append(4);
        try list.insertSlice(1, &[_]i32{ 9, 8 });
        try testing.expect(list.items[0] == 1);
        try testing.expect(list.items[1] == 9);
        try testing.expect(list.items[2] == 8);
        try testing.expect(list.items[3] == 2);
        try testing.expect(list.items[4] == 3);
        try testing.expect(list.items[5] == 4);

        const items = [_]i32{1};
        try list.insertSlice(0, items[0..0]);
        try testing.expect(list.items.len == 6);
        try testing.expect(list.items[0] == 1);
    }
    {
        var list = ArrayListUnmanaged(i32){};
        defer list.deinit(a);

        try list.append(a, 1);
        try list.append(a, 2);
        try list.append(a, 3);
        try list.append(a, 4);
        try list.insertSlice(a, 1, &[_]i32{ 9, 8 });
        try testing.expect(list.items[0] == 1);
        try testing.expect(list.items[1] == 9);
        try testing.expect(list.items[2] == 8);
        try testing.expect(list.items[3] == 2);
        try testing.expect(list.items[4] == 3);
        try testing.expect(list.items[5] == 4);

        const items = [_]i32{1};
        try list.insertSlice(a, 0, items[0..0]);
        try testing.expect(list.items.len == 6);
        try testing.expect(list.items[0] == 1);
    }
}

Test:

std.ArrayList/ArrayListUnmanaged.replaceRange

test "std.ArrayList/ArrayListUnmanaged.replaceRange" {
    var arena = std.heap.ArenaAllocator.init(testing.allocator);
    defer arena.deinit();
    const a = arena.allocator();

    const init = [_]i32{ 1, 2, 3, 4, 5 };
    const new = [_]i32{ 0, 0, 0 };

    const result_zero = [_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 };
    const result_eq = [_]i32{ 1, 0, 0, 0, 5 };
    const result_le = [_]i32{ 1, 0, 0, 0, 4, 5 };
    const result_gt = [_]i32{ 1, 0, 0, 0 };

    {
        var list_zero = ArrayList(i32).init(a);
        var list_eq = ArrayList(i32).init(a);
        var list_lt = ArrayList(i32).init(a);
        var list_gt = ArrayList(i32).init(a);

        try list_zero.appendSlice(&init);
        try list_eq.appendSlice(&init);
        try list_lt.appendSlice(&init);
        try list_gt.appendSlice(&init);

        try list_zero.replaceRange(1, 0, &new);
        try list_eq.replaceRange(1, 3, &new);
        try list_lt.replaceRange(1, 2, &new);

        // after_range > new_items.len in function body
        try testing.expect(1 + 4 > new.len);
        try list_gt.replaceRange(1, 4, &new);

        try testing.expectEqualSlices(i32, list_zero.items, &result_zero);
        try testing.expectEqualSlices(i32, list_eq.items, &result_eq);
        try testing.expectEqualSlices(i32, list_lt.items, &result_le);
        try testing.expectEqualSlices(i32, list_gt.items, &result_gt);
    }
    {
        var list_zero = ArrayListUnmanaged(i32){};
        var list_eq = ArrayListUnmanaged(i32){};
        var list_lt = ArrayListUnmanaged(i32){};
        var list_gt = ArrayListUnmanaged(i32){};

        try list_zero.appendSlice(a, &init);
        try list_eq.appendSlice(a, &init);
        try list_lt.appendSlice(a, &init);
        try list_gt.appendSlice(a, &init);

        try list_zero.replaceRange(a, 1, 0, &new);
        try list_eq.replaceRange(a, 1, 3, &new);
        try list_lt.replaceRange(a, 1, 2, &new);

        // after_range > new_items.len in function body
        try testing.expect(1 + 4 > new.len);
        try list_gt.replaceRange(a, 1, 4, &new);

        try testing.expectEqualSlices(i32, list_zero.items, &result_zero);
        try testing.expectEqualSlices(i32, list_eq.items, &result_eq);
        try testing.expectEqualSlices(i32, list_lt.items, &result_le);
        try testing.expectEqualSlices(i32, list_gt.items, &result_gt);
    }
}

const Item = struct {
    integer: i32,
    sub_items: ArrayList(Item),
};

const ItemUnmanaged = struct {
    integer: i32,
    sub_items: ArrayListUnmanaged(ItemUnmanaged),
};

Test:

std.ArrayList/ArrayListUnmanaged: ArrayList(T) of struct T

test "std.ArrayList/ArrayListUnmanaged: ArrayList(T) of struct T" {
    const a = std.testing.allocator;
    {
        var root = Item{ .integer = 1, .sub_items = ArrayList(Item).init(a) };
        defer root.sub_items.deinit();
        try root.sub_items.append(Item{ .integer = 42, .sub_items = ArrayList(Item).init(a) });
        try testing.expect(root.sub_items.items[0].integer == 42);
    }
    {
        var root = ItemUnmanaged{ .integer = 1, .sub_items = ArrayListUnmanaged(ItemUnmanaged){} };
        defer root.sub_items.deinit(a);
        try root.sub_items.append(a, ItemUnmanaged{ .integer = 42, .sub_items = ArrayListUnmanaged(ItemUnmanaged){} });
        try testing.expect(root.sub_items.items[0].integer == 42);
    }
}

Test:

std.ArrayList(u8)/ArrayListAligned implements writer

test "std.ArrayList(u8)/ArrayListAligned implements writer" {
    const a = testing.allocator;

    {
        var buffer = ArrayList(u8).init(a);
        defer buffer.deinit();

        const x: i32 = 42;
        const y: i32 = 1234;
        try buffer.writer().print("x: {}\ny: {}\n", .{ x, y });

        try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
    }
    {
        var list = ArrayListAligned(u8, 2).init(a);
        defer list.deinit();

        const writer = list.writer();
        try writer.writeAll("a");
        try writer.writeAll("bc");
        try writer.writeAll("d");
        try writer.writeAll("efg");

        try testing.expectEqualSlices(u8, list.items, "abcdefg");
    }
}

Test:

std.ArrayListUnmanaged(u8) implements writer

test "std.ArrayListUnmanaged(u8) implements writer" {
    const a = testing.allocator;

    {
        var buffer: ArrayListUnmanaged(u8) = .{};
        defer buffer.deinit(a);

        const x: i32 = 42;
        const y: i32 = 1234;
        try buffer.writer(a).print("x: {}\ny: {}\n", .{ x, y });

        try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
    }
    {
        var list: ArrayListAlignedUnmanaged(u8, 2) = .{};
        defer list.deinit(a);

        const writer = list.writer(a);
        try writer.writeAll("a");
        try writer.writeAll("bc");
        try writer.writeAll("d");
        try writer.writeAll("efg");

        try testing.expectEqualSlices(u8, list.items, "abcdefg");
    }
}

Test:

shrink still sets length when resizing is disabled

test "shrink still sets length when resizing is disabled" {
    var failing_allocator = testing.FailingAllocator.init(testing.allocator, .{ .resize_fail_index = 0 });
    const a = failing_allocator.allocator();

    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.append(1);
        try list.append(2);
        try list.append(3);

        list.shrinkAndFree(1);
        try testing.expect(list.items.len == 1);
    }
    {
        var list = ArrayListUnmanaged(i32){};
        defer list.deinit(a);

        try list.append(a, 1);
        try list.append(a, 2);
        try list.append(a, 3);

        list.shrinkAndFree(a, 1);
        try testing.expect(list.items.len == 1);
    }
}

Test:

shrinkAndFree with a copy

test "shrinkAndFree with a copy" {
    var failing_allocator = testing.FailingAllocator.init(testing.allocator, .{ .resize_fail_index = 0 });
    const a = failing_allocator.allocator();

    var list = ArrayList(i32).init(a);
    defer list.deinit();

    try list.appendNTimes(3, 16);
    list.shrinkAndFree(4);
    try testing.expect(mem.eql(i32, list.items, &.{ 3, 3, 3, 3 }));
}

Test:

std.ArrayList/ArrayListUnmanaged.addManyAsArray

test "std.ArrayList/ArrayListUnmanaged.addManyAsArray" {
    const a = std.testing.allocator;
    {
        var list = ArrayList(u8).init(a);
        defer list.deinit();

        (try list.addManyAsArray(4)).* = "aoeu".*;
        try list.ensureTotalCapacity(8);
        list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;

        try testing.expectEqualSlices(u8, list.items, "aoeuasdf");
    }
    {
        var list = ArrayListUnmanaged(u8){};
        defer list.deinit(a);

        (try list.addManyAsArray(a, 4)).* = "aoeu".*;
        try list.ensureTotalCapacity(a, 8);
        list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;

        try testing.expectEqualSlices(u8, list.items, "aoeuasdf");
    }
}

Test:

std.ArrayList/ArrayListUnmanaged growing memory preserves contents

test "std.ArrayList/ArrayListUnmanaged growing memory preserves contents" {
    // Shrink the list after every insertion to ensure that a memory growth
    // will be triggered in the next operation.
    const a = std.testing.allocator;
    {
        var list = ArrayList(u8).init(a);
        defer list.deinit();

        (try list.addManyAsArray(4)).* = "abcd".*;
        list.shrinkAndFree(4);

        try list.appendSlice("efgh");
        try testing.expectEqualSlices(u8, list.items, "abcdefgh");
        list.shrinkAndFree(8);

        try list.insertSlice(4, "ijkl");
        try testing.expectEqualSlices(u8, list.items, "abcdijklefgh");
    }
    {
        var list = ArrayListUnmanaged(u8){};
        defer list.deinit(a);

        (try list.addManyAsArray(a, 4)).* = "abcd".*;
        list.shrinkAndFree(a, 4);

        try list.appendSlice(a, "efgh");
        try testing.expectEqualSlices(u8, list.items, "abcdefgh");
        list.shrinkAndFree(a, 8);

        try list.insertSlice(a, 4, "ijkl");
        try testing.expectEqualSlices(u8, list.items, "abcdijklefgh");
    }
}

Test:

std.ArrayList/ArrayList.fromOwnedSliceSentinel

test "std.ArrayList/ArrayList.fromOwnedSliceSentinel" {
    const a = testing.allocator;

    var orig_list = ArrayList(u8).init(a);
    defer orig_list.deinit();
    try orig_list.appendSlice("foobar");
    const sentinel_slice = try orig_list.toOwnedSliceSentinel(0);

    var list = ArrayList(u8).fromOwnedSliceSentinel(a, 0, sentinel_slice);
    defer list.deinit();
    try testing.expectEqualStrings(list.items, "foobar");
}

Test:

std.ArrayList/ArrayListUnmanaged.fromOwnedSlice

test "std.ArrayList/ArrayListUnmanaged.fromOwnedSlice" {
    const a = testing.allocator;

    var list = ArrayList(u8).init(a);
    defer list.deinit();
    try list.appendSlice("foobar");

    const slice = try list.toOwnedSlice();
    var unmanaged = ArrayListUnmanaged(u8).fromOwnedSlice(slice);
    defer unmanaged.deinit(a);
    try testing.expectEqualStrings(unmanaged.items, "foobar");
}

Test:

std.ArrayList/ArrayListUnmanaged.fromOwnedSliceSentinel

test "std.ArrayList/ArrayListUnmanaged.fromOwnedSliceSentinel" {
    const a = testing.allocator;

    var list = ArrayList(u8).init(a);
    defer list.deinit();
    try list.appendSlice("foobar");

    const sentinel_slice = try list.toOwnedSliceSentinel(0);
    var unmanaged = ArrayListUnmanaged(u8).fromOwnedSliceSentinel(0, sentinel_slice);
    defer unmanaged.deinit(a);
    try testing.expectEqualStrings(unmanaged.items, "foobar");
}

Test:

std.ArrayList/ArrayListUnmanaged.toOwnedSliceSentinel

test "std.ArrayList/ArrayListUnmanaged.toOwnedSliceSentinel" {
    const a = testing.allocator;
    {
        var list = ArrayList(u8).init(a);
        defer list.deinit();

        try list.appendSlice("foobar");

        const result = try list.toOwnedSliceSentinel(0);
        defer a.free(result);
        try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0));
    }
    {
        var list = ArrayListUnmanaged(u8){};
        defer list.deinit(a);

        try list.appendSlice(a, "foobar");

        const result = try list.toOwnedSliceSentinel(a, 0);
        defer a.free(result);
        try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0));
    }
}

Test:

ArrayListAligned/ArrayListAlignedUnmanaged accepts unaligned slices

test "ArrayListAligned/ArrayListAlignedUnmanaged accepts unaligned slices" {
    const a = testing.allocator;
    {
        var list = std.ArrayListAligned(u8, 8).init(a);
        defer list.deinit();

        try list.appendSlice(&.{ 0, 1, 2, 3 });
        try list.insertSlice(2, &.{ 4, 5, 6, 7 });
        try list.replaceRange(1, 3, &.{ 8, 9 });

        try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
    }
    {
        var list = std.ArrayListAlignedUnmanaged(u8, 8){};
        defer list.deinit(a);

        try list.appendSlice(a, &.{ 0, 1, 2, 3 });
        try list.insertSlice(a, 2, &.{ 4, 5, 6, 7 });
        try list.replaceRange(a, 1, 3, &.{ 8, 9 });

        try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
    }
}

Test:

std.ArrayList(u0)

test "std.ArrayList(u0)" {
    // An ArrayList on zero-sized types should not need to allocate
    const a = testing.failing_allocator;

    var list = ArrayList(u0).init(a);
    defer list.deinit();

    try list.append(0);
    try list.append(0);
    try list.append(0);
    try testing.expectEqual(list.items.len, 3);

    var count: usize = 0;
    for (list.items) |x| {
        try testing.expectEqual(x, 0);
        count += 1;
    }
    try testing.expectEqual(count, 3);
}

Test:

std.ArrayList(?u32).popOrNull()

test "std.ArrayList(?u32).popOrNull()" {
    const a = testing.allocator;

    var list = ArrayList(?u32).init(a);
    defer list.deinit();

    try list.append(null);
    try list.append(1);
    try list.append(2);
    try testing.expectEqual(list.items.len, 3);

    try testing.expect(list.popOrNull().? == @as(u32, 2));
    try testing.expect(list.popOrNull().? == @as(u32, 1));
    try testing.expect(list.popOrNull().? == null);
    try testing.expect(list.popOrNull() == null);
}

Test:

std.ArrayList(u32).getLast()

test "std.ArrayList(u32).getLast()" {
    const a = testing.allocator;

    var list = ArrayList(u32).init(a);
    defer list.deinit();

    try list.append(2);
    const const_list = list;
    try testing.expectEqual(const_list.getLast(), 2);
}

Test:

std.ArrayList(u32).getLastOrNull()

test "std.ArrayList(u32).getLastOrNull()" {
    const a = testing.allocator;

    var list = ArrayList(u32).init(a);
    defer list.deinit();

    try testing.expectEqual(list.getLastOrNull(), null);

    try list.append(2);
    const const_list = list;
    try testing.expectEqual(const_list.getLastOrNull().?, 2);
}