zig/lib/std / bounded_array.zig

const std = @import("std.zig");
const assert = std.debug.assert;
const mem = std.mem;
const testing = std.testing;

BoundedArray()

A structure with an array and a length, that can be used as a slice.

Useful to pass around small arrays whose exact size is only known at runtime, but whose maximum size is known at comptime, without requiring an Allocator.

```zig var actual_size = 32; var a = try BoundedArray(u8, 64).init(actual_size); var slice = a.slice(); // a slice of the 64-byte array var a_clone = a; // creates a copy - the structure doesn't use any internal pointers ```

pub fn BoundedArray(comptime T: type, comptime buffer_capacity: usize) type {
    return BoundedArrayAligned(T, @alignOf(T), buffer_capacity);
}

//  var a = try BoundedArrayAligned(u8, 16, 2).init(0);
//  try a.append(255);
//  try a.append(255);
//  const b = @ptrCast(*const [1]u16, a.constSlice().ptr);
//  try testing.expectEqual(@as(u16, 65535), b[0]);

BoundedArrayAligned()

A structure with an array, length and alignment, that can be used as a slice.

Useful to pass around small explicitly-aligned arrays whose exact size is only known at runtime, but whose maximum size is known at comptime, without requiring an Allocator. ```zig ```

pub fn BoundedArrayAligned(
    comptime T: type,
    comptime alignment: u29,
    comptime buffer_capacity: usize,
) type {
    return struct {
        const Self = @This();
        const Len = std.math.IntFittingRange(0, buffer_capacity);

        buffer: [buffer_capacity]T align(alignment) = undefined,
        len: Len = 0,

init()

Set the actual length of the slice. Returns error.Overflow if it exceeds the length of the backing array.

        pub fn init(len: usize) error{Overflow}!Self {
            if (len > buffer_capacity) return error.Overflow;
            return Self{ .len = @intCast(len) };
        }

slice()

View the internal array as a slice whose size was previously set.

        pub fn slice(self: anytype) switch (@TypeOf(&self.buffer)) {
            *align(alignment) [buffer_capacity]T => []align(alignment) T,
            *align(alignment) const [buffer_capacity]T => []align(alignment) const T,
            else => unreachable,
        } {
            return self.buffer[0..self.len];
        }

constSlice()

View the internal array as a constant slice whose size was previously set.

        pub fn constSlice(self: *const Self) []align(alignment) const T {
            return self.slice();
        }

resize()

Adjust the slice's length to len. Does not initialize added items if any.

        pub fn resize(self: *Self, len: usize) error{Overflow}!void {
            if (len > buffer_capacity) return error.Overflow;
            self.len = @intCast(len);
        }

fromSlice()

Copy the content of an existing slice.

        pub fn fromSlice(m: []const T) error{Overflow}!Self {
            var list = try init(m.len);
            @memcpy(list.slice(), m);
            return list;
        }

get()

Return the element at index i of the slice.

        pub fn get(self: Self, i: usize) T {
            return self.constSlice()[i];
        }

set()

Set the value of the element at index i of the slice.

        pub fn set(self: *Self, i: usize, item: T) void {
            self.slice()[i] = item;
        }

capacity()

Return the maximum length of a slice.

        pub fn capacity(self: Self) usize {
            return self.buffer.len;
        }

ensureUnusedCapacity()

Check that the slice can hold at least additional_count items.

        pub fn ensureUnusedCapacity(self: Self, additional_count: usize) error{Overflow}!void {
            if (self.len + additional_count > buffer_capacity) {
                return error.Overflow;
            }
        }

addOne()

Increase length by 1, returning a pointer to the new item.

        pub fn addOne(self: *Self) error{Overflow}!*T {
            try self.ensureUnusedCapacity(1);
            return self.addOneAssumeCapacity();
        }

addOneAssumeCapacity()

Increase length by 1, returning pointer to the new item. Asserts that there is space for the new item.

        pub fn addOneAssumeCapacity(self: *Self) *T {
            assert(self.len < buffer_capacity);
            self.len += 1;
            return &self.slice()[self.len - 1];
        }

addManyAsArray()

Resize the slice, adding n new elements, which have undefined values. The return value is a slice pointing to the uninitialized elements.

        pub fn addManyAsArray(self: *Self, comptime n: usize) error{Overflow}!*align(alignment) [n]T {
            const prev_len = self.len;
            try self.resize(self.len + n);
            return self.slice()[prev_len..][0..n];
        }

pop()

Remove and return the last element from the slice. Asserts the slice has at least one item.

        pub fn pop(self: *Self) T {
            const item = self.get(self.len - 1);
            self.len -= 1;
            return item;
        }

popOrNull()

Remove and return the last element from the slice, or return null if the slice is empty.

        pub fn popOrNull(self: *Self) ?T {
            return if (self.len == 0) null else self.pop();
        }

unusedCapacitySlice()

Return a slice of only the extra capacity after items. This can be useful for writing directly into it. Note that such an operation must be followed up with a call to resize()

        pub fn unusedCapacitySlice(self: *Self) []align(alignment) T {
            return self.buffer[self.len..];
        }

insert()

Insert item at index i by moving slice[n .. slice.len] to make room. This operation is O(N).

        pub fn insert(
            self: *Self,
            i: usize,
            item: T,
        ) error{Overflow}!void {
            if (i > self.len) {
                return error.Overflow;
            }
            _ = try self.addOne();
            var s = self.slice();
            mem.copyBackwards(T, s[i + 1 .. s.len], s[i .. s.len - 1]);
            self.buffer[i] = item;
        }

insertSlice()

Insert slice items at index i by moving slice[i .. slice.len] to make room. This operation is O(N).

        pub fn insertSlice(self: *Self, i: usize, items: []const T) error{Overflow}!void {
            try self.ensureUnusedCapacity(items.len);
            self.len = @intCast(self.len + items.len);
            mem.copyBackwards(T, self.slice()[i + items.len .. self.len], self.constSlice()[i .. self.len - items.len]);
            @memcpy(self.slice()[i..][0..items.len], items);
        }

replaceRange()

Replace range of elements slice[start..][0..len] with new_items. Grows slice if len < new_items.len. Shrinks slice if len > new_items.len.

        pub fn replaceRange(
            self: *Self,
            start: usize,
            len: usize,
            new_items: []const T,
        ) error{Overflow}!void {
            const after_range = start + len;
            var range = self.slice()[start..after_range];

            if (range.len == new_items.len) {
                @memcpy(range[0..new_items.len], new_items);
            } else if (range.len < new_items.len) {
                const first = new_items[0..range.len];
                const rest = new_items[range.len..];
                @memcpy(range[0..first.len], first);
                try self.insertSlice(after_range, rest);
            } else {
                @memcpy(range[0..new_items.len], new_items);
                const after_subrange = start + new_items.len;
                for (self.constSlice()[after_range..], 0..) |item, i| {
                    self.slice()[after_subrange..][i] = item;
                }
                self.len = @intCast(self.len - len + new_items.len);
            }
        }

append()

Extend the slice by 1 element.

        pub fn append(self: *Self, item: T) error{Overflow}!void {
            const new_item_ptr = try self.addOne();
            new_item_ptr.* = item;
        }

appendAssumeCapacity()

Extend the slice by 1 element, asserting the capacity is already enough to store the new item.

        pub fn appendAssumeCapacity(self: *Self, item: T) void {
            const new_item_ptr = self.addOneAssumeCapacity();
            new_item_ptr.* = item;
        }

orderedRemove()

Remove the element at index i, shift elements after index i forward, and return the removed element. Asserts the slice has at least one item. This operation is O(N).

        pub fn orderedRemove(self: *Self, i: usize) T {
            const newlen = self.len - 1;
            if (newlen == i) return self.pop();
            const old_item = self.get(i);
            for (self.slice()[i..newlen], 0..) |*b, j| b.* = self.get(i + 1 + j);
            self.set(newlen, undefined);
            self.len = newlen;
            return old_item;
        }

swapRemove()

Remove the element at the specified index and return it. The empty slot is filled from the end of the slice. This operation is O(1).

        pub fn swapRemove(self: *Self, i: usize) T {
            if (self.len - 1 == i) return self.pop();
            const old_item = self.get(i);
            self.set(i, self.pop());
            return old_item;
        }

appendSlice()

Append the slice of items to the slice.

        pub fn appendSlice(self: *Self, items: []const T) error{Overflow}!void {
            try self.ensureUnusedCapacity(items.len);
            self.appendSliceAssumeCapacity(items);
        }

appendSliceAssumeCapacity()

Append the slice of items to the slice, asserting the capacity is already enough to store the new items.

        pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
            const old_len = self.len;
            self.len = @intCast(self.len + items.len);
            @memcpy(self.slice()[old_len..][0..items.len], items);
        }

appendNTimes()

Append a value to the slice n times. Allocates more memory as necessary.

        pub fn appendNTimes(self: *Self, value: T, n: usize) error{Overflow}!void {
            const old_len = self.len;
            try self.resize(old_len + n);
            @memset(self.slice()[old_len..self.len], value);
        }

appendNTimesAssumeCapacity()

Append a value to the slice n times. Asserts the capacity is enough.

        pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
            const old_len = self.len;
            assert(self.len + n <= buffer_capacity);
            self.len = @intCast(self.len + n);
            @memset(self.slice()[old_len..self.len], value);
        }

        pub const Writer = if (T != u8)
            @compileError("The Writer interface is only defined for BoundedArray(u8, ...) " ++
                "but the given type is BoundedArray(" ++ @typeName(T) ++ ", ...)")
        else
            std.io.Writer(*Self, error{Overflow}, appendWrite);

writer()

Initializes a writer which will write into the array.

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }

        fn appendWrite(self: *Self, m: []const u8) error{Overflow}!usize {
            try self.appendSlice(m);
            return m.len;
        }
    };
}

Test:

BoundedArray

Same as appendSlice except it returns the number of bytes written, which is always the same as m.len. The purpose of this function existing is to match std.io.Writer API.

test "BoundedArray" {
    var a = try BoundedArray(u8, 64).init(32);

    try testing.expectEqual(a.capacity(), 64);
    try testing.expectEqual(a.slice().len, 32);
    try testing.expectEqual(a.constSlice().len, 32);

    try a.resize(48);
    try testing.expectEqual(a.len, 48);

    const x = [_]u8{1} ** 10;
    a = try BoundedArray(u8, 64).fromSlice(&x);
    try testing.expectEqualSlices(u8, &x, a.constSlice());

    var a2 = a;
    try testing.expectEqualSlices(u8, a.constSlice(), a2.constSlice());
    a2.set(0, 0);
    try testing.expect(a.get(0) != a2.get(0));

    try testing.expectError(error.Overflow, a.resize(100));
    try testing.expectError(error.Overflow, BoundedArray(u8, x.len - 1).fromSlice(&x));

    try a.resize(0);
    try a.ensureUnusedCapacity(a.capacity());
    (try a.addOne()).* = 0;
    try a.ensureUnusedCapacity(a.capacity() - 1);
    try testing.expectEqual(a.len, 1);

    const uninitialized = try a.addManyAsArray(4);
    try testing.expectEqual(uninitialized.len, 4);
    try testing.expectEqual(a.len, 5);

    try a.append(0xff);
    try testing.expectEqual(a.len, 6);
    try testing.expectEqual(a.pop(), 0xff);

    a.appendAssumeCapacity(0xff);
    try testing.expectEqual(a.len, 6);
    try testing.expectEqual(a.pop(), 0xff);

    try a.resize(1);
    try testing.expectEqual(a.popOrNull(), 0);
    try testing.expectEqual(a.popOrNull(), null);
    var unused = a.unusedCapacitySlice();
    @memset(unused[0..8], 2);
    unused[8] = 3;
    unused[9] = 4;
    try testing.expectEqual(unused.len, a.capacity());
    try a.resize(10);

    try a.insert(5, 0xaa);
    try testing.expectEqual(a.len, 11);
    try testing.expectEqual(a.get(5), 0xaa);
    try testing.expectEqual(a.get(9), 3);
    try testing.expectEqual(a.get(10), 4);

    try a.insert(11, 0xbb);
    try testing.expectEqual(a.len, 12);
    try testing.expectEqual(a.pop(), 0xbb);

    try a.appendSlice(&x);
    try testing.expectEqual(a.len, 11 + x.len);

    try a.appendNTimes(0xbb, 5);
    try testing.expectEqual(a.len, 11 + x.len + 5);
    try testing.expectEqual(a.pop(), 0xbb);

    a.appendNTimesAssumeCapacity(0xcc, 5);
    try testing.expectEqual(a.len, 11 + x.len + 5 - 1 + 5);
    try testing.expectEqual(a.pop(), 0xcc);

    try testing.expectEqual(a.len, 29);
    try a.replaceRange(1, 20, &x);
    try testing.expectEqual(a.len, 29 + x.len - 20);

    try a.insertSlice(0, &x);
    try testing.expectEqual(a.len, 29 + x.len - 20 + x.len);

    try a.replaceRange(1, 5, &x);
    try testing.expectEqual(a.len, 29 + x.len - 20 + x.len + x.len - 5);

    try a.append(10);
    try testing.expectEqual(a.pop(), 10);

    try a.append(20);
    const removed = a.orderedRemove(5);
    try testing.expectEqual(removed, 1);
    try testing.expectEqual(a.len, 34);

    a.set(0, 0xdd);
    a.set(a.len - 1, 0xee);
    const swapped = a.swapRemove(0);
    try testing.expectEqual(swapped, 0xdd);
    try testing.expectEqual(a.get(0), 0xee);

    while (a.popOrNull()) |_| {}
    const w = a.writer();
    const s = "hello, this is a test string";
    try w.writeAll(s);
    try testing.expectEqualStrings(s, a.constSlice());
}

Test:

BoundedArray sizeOf

test "BoundedArray sizeOf" {
    // Just sanity check size on one CPU
    if (@import("builtin").cpu.arch != .x86_64)
        return;

    try testing.expectEqual(@sizeOf(BoundedArray(u8, 3)), 4);

    // `len` is the minimum required size to hold the maximum capacity
    try testing.expectEqual(@TypeOf(@as(BoundedArray(u8, 15), undefined).len), u4);
    try testing.expectEqual(@TypeOf(@as(BoundedArray(u8, 16), undefined).len), u5);
}

Test:

BoundedArrayAligned

test "BoundedArrayAligned" {
    var a = try BoundedArrayAligned(u8, 16, 4).init(0);
    try a.append(0);
    try a.append(0);
    try a.append(255);
    try a.append(255);

    const b = @as(*const [2]u16, @ptrCast(a.constSlice().ptr));
    try testing.expectEqual(@as(u16, 0), b[0]);
    try testing.expectEqual(@as(u16, 65535), b[1]);
}