|
const std = @import("std.zig"); const builtin = @import("builtin"); const unicode = std.unicode; const io = std.io; const fs = std.fs; const os = std.os; const process = std.process; const File = std.fs.File; const windows = os.windows; const linux = os.linux; const mem = std.mem; const math = std.math; const debug = std.debug; const EnvMap = process.EnvMap; const maxInt = std.math.maxInt; const assert = std.debug.assert; |
ChildProcess |
pub const ChildProcess = struct { pub const Id = switch (builtin.os.tag) { .windows => windows.HANDLE, .wasi => void, else => os.pid_t, }; id: Id, thread_handle: if (builtin.os.tag == .windows) windows.HANDLE else void, allocator: mem.Allocator, stdin: ?File, stdout: ?File, stderr: ?File, term: ?(SpawnError!Term), argv: []const []const u8, env_map: ?*const EnvMap, stdin_behavior: StdIo, stdout_behavior: StdIo, stderr_behavior: StdIo, uid: if (builtin.os.tag == .windows or builtin.os.tag == .wasi) void else ?os.uid_t, gid: if (builtin.os.tag == .windows or builtin.os.tag == .wasi) void else ?os.gid_t, cwd: ?[]const u8, cwd_dir: ?fs.Dir = null, err_pipe: ?if (builtin.os.tag == .windows) void else [2]os.fd_t, expand_arg0: Arg0Expand, disable_aslr: bool = false, start_suspended: bool = false, request_resource_usage_statistics: bool = false, resource_usage_statistics: ResourceUsageStatistics = .{}, pub const ResourceUsageStatistics = struct { rusage: @TypeOf(rusage_init) = rusage_init, |
getMaxRss() Available after calling |
pub inline fn getMaxRss(rus: ResourceUsageStatistics) ?usize { switch (builtin.os.tag) { .linux => { if (rus.rusage) |ru| { return @as(usize, @intCast(ru.maxrss)) * 1024; } else { return null; } }, .windows => { if (rus.rusage) |ru| { return ru.PeakWorkingSetSize; } else { return null; } }, .macos, .ios => { if (rus.rusage) |ru| { // Darwin oddly reports in bytes instead of kilobytes. return @as(usize, @intCast(ru.maxrss)); } else { return null; } }, else => return null, } } const rusage_init = switch (builtin.os.tag) { .linux, .macos, .ios => @as(?std.os.rusage, null), .windows => @as(?windows.VM_COUNTERS, null), else => {}, }; }; pub const Arg0Expand = os.Arg0Expand; pub const SpawnError = error{ OutOfMemory, NoDevice, InvalidUtf8, CurrentWorkingDirectoryUnlinked, } || os.ExecveError || os.SetIdError || os.ChangeCurDirError || windows.CreateProcessError || windows.GetProcessMemoryInfoError || windows.WaitForSingleObjectError; pub const Term = union(enum) { Exited: u8, Signal: u32, Stopped: u32, Unknown: u32, }; pub const StdIo = enum { Inherit, Ignore, Pipe, Close, }; |
init() POSIX-only. |
pub fn init(argv: []const []const u8, allocator: mem.Allocator) ChildProcess { return .{ .allocator = allocator, .argv = argv, .id = undefined, .thread_handle = undefined, .err_pipe = null, .term = null, .env_map = null, .cwd = null, .uid = if (builtin.os.tag == .windows or builtin.os.tag == .wasi) {} else null, .gid = if (builtin.os.tag == .windows or builtin.os.tag == .wasi) {} else null, .stdin = null, .stdout = null, .stderr = null, .stdin_behavior = StdIo.Inherit, .stdout_behavior = StdIo.Inherit, .stderr_behavior = StdIo.Inherit, .expand_arg0 = .no_expand, }; } |
setUserName() |
pub fn setUserName(self: *ChildProcess, name: []const u8) !void { const user_info = try std.process.getUserInfo(name); self.uid = user_info.uid; self.gid = user_info.gid; } |
spawn() On success must call |
pub fn spawn(self: *ChildProcess) SpawnError!void { if (!std.process.can_spawn) { @compileError("the target operating system cannot spawn processes"); } if (builtin.os.tag == .windows) { return self.spawnWindows(); } else { return self.spawnPosix(); } } |
spawnAndWait() |
pub fn spawnAndWait(self: *ChildProcess) SpawnError!Term { try self.spawn(); return self.wait(); } |
kill()Forcibly terminates child process and then cleans up all resources. |
pub fn kill(self: *ChildProcess) !Term { if (builtin.os.tag == .windows) { return self.killWindows(1); } else { return self.killPosix(); } } |
killWindows() |
pub fn killWindows(self: *ChildProcess, exit_code: windows.UINT) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } windows.TerminateProcess(self.id, exit_code) catch |err| switch (err) { error.PermissionDenied => { // Usually when TerminateProcess triggers a ACCESS_DENIED error, it // indicates that the process has already exited, but there may be // some rare edge cases where our process handle no longer has the // PROCESS_TERMINATE access right, so let's do another check to make // sure the process is really no longer running: windows.WaitForSingleObjectEx(self.id, 0, false) catch return err; return error.AlreadyTerminated; }, else => return err, }; try self.waitUnwrappedWindows(); return self.term.?; } |
killPosix() |
pub fn killPosix(self: *ChildProcess) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } os.kill(self.id, os.SIG.TERM) catch |err| switch (err) { error.ProcessNotFound => return error.AlreadyTerminated, else => return err, }; try self.waitUnwrapped(); return self.term.?; } |
wait()Blocks until child process terminates and then cleans up all resources. |
pub fn wait(self: *ChildProcess) !Term { const term = if (builtin.os.tag == .windows) try self.waitWindows() else try self.waitPosix(); self.id = undefined; return term; } pub const RunResult = struct { term: Term, stdout: []u8, stderr: []u8, }; fn fifoToOwnedArrayList(fifo: *std.io.PollFifo) std.ArrayList(u8) { if (fifo.head > 0) { @memcpy(fifo.buf[0..fifo.count], fifo.buf[fifo.head..][0..fifo.count]); } const result = std.ArrayList(u8){ .items = fifo.buf[0..fifo.count], .capacity = fifo.buf.len, .allocator = fifo.allocator, }; fifo.* = std.io.PollFifo.init(fifo.allocator); return result; } |
collectOutput() Collect the output from the process's stdout and stderr. Will return once all output has been collected. This does not mean that the process has ended. |
pub fn collectOutput( child: ChildProcess, stdout: *std.ArrayList(u8), stderr: *std.ArrayList(u8), max_output_bytes: usize, ) !void { debug.assert(child.stdout_behavior == .Pipe); debug.assert(child.stderr_behavior == .Pipe); // we could make this work with multiple allocators but YAGNI if (stdout.allocator.ptr != stderr.allocator.ptr or stdout.allocator.vtable != stderr.allocator.vtable) @panic("ChildProcess.collectOutput only supports 1 allocator"); var poller = std.io.poll(stdout.allocator, enum { stdout, stderr }, .{ .stdout = child.stdout.?, .stderr = child.stderr.?, }); defer poller.deinit(); while (try poller.poll()) { if (poller.fifo(.stdout).count > max_output_bytes) return error.StdoutStreamTooLong; if (poller.fifo(.stderr).count > max_output_bytes) return error.StderrStreamTooLong; } stdout.* = fifoToOwnedArrayList(poller.fifo(.stdout)); stderr.* = fifoToOwnedArrayList(poller.fifo(.stderr)); } pub const RunError = os.GetCwdError || os.ReadError || SpawnError || os.PollError || error{ StdoutStreamTooLong, StderrStreamTooLong, }; |
run()Spawns a child process, waits for it, collecting stdout and stderr, and then returns. If it succeeds, the caller owns result.stdout and result.stderr memory. |
pub fn run(args: struct { allocator: mem.Allocator, argv: []const []const u8, cwd: ?[]const u8 = null, cwd_dir: ?fs.Dir = null, env_map: ?*const EnvMap = null, max_output_bytes: usize = 50 * 1024, expand_arg0: Arg0Expand = .no_expand, }) RunError!RunResult { var child = ChildProcess.init(args.argv, args.allocator); child.stdin_behavior = .Ignore; child.stdout_behavior = .Pipe; child.stderr_behavior = .Pipe; child.cwd = args.cwd; child.cwd_dir = args.cwd_dir; child.env_map = args.env_map; child.expand_arg0 = args.expand_arg0; var stdout = std.ArrayList(u8).init(args.allocator); var stderr = std.ArrayList(u8).init(args.allocator); errdefer { stdout.deinit(); stderr.deinit(); } try child.spawn(); try child.collectOutput(&stdout, &stderr, args.max_output_bytes); return RunResult{ .term = try child.wait(), .stdout = try stdout.toOwnedSlice(), .stderr = try stderr.toOwnedSlice(), }; } fn waitWindows(self: *ChildProcess) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } try self.waitUnwrappedWindows(); return self.term.?; } fn waitPosix(self: *ChildProcess) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } try self.waitUnwrapped(); return self.term.?; } fn waitUnwrappedWindows(self: *ChildProcess) !void { const result = windows.WaitForSingleObjectEx(self.id, windows.INFINITE, false); self.term = @as(SpawnError!Term, x: { var exit_code: windows.DWORD = undefined; if (windows.kernel32.GetExitCodeProcess(self.id, &exit_code) == 0) { break :x Term{ .Unknown = 0 }; } else { break :x Term{ .Exited = @as(u8, @truncate(exit_code)) }; } }); if (self.request_resource_usage_statistics) { self.resource_usage_statistics.rusage = try windows.GetProcessMemoryInfo(self.id); } os.close(self.id); os.close(self.thread_handle); self.cleanupStreams(); return result; } fn waitUnwrapped(self: *ChildProcess) !void { const res: os.WaitPidResult = res: { if (self.request_resource_usage_statistics) { switch (builtin.os.tag) { .linux, .macos, .ios => { var ru: std.os.rusage = undefined; const res = os.wait4(self.id, 0, &ru); self.resource_usage_statistics.rusage = ru; break :res res; }, else => {}, } } break :res os.waitpid(self.id, 0); }; const status = res.status; self.cleanupStreams(); self.handleWaitResult(status); } fn handleWaitResult(self: *ChildProcess, status: u32) void { self.term = self.cleanupAfterWait(status); } fn cleanupStreams(self: *ChildProcess) void { if (self.stdin) |*stdin| { stdin.close(); self.stdin = null; } if (self.stdout) |*stdout| { stdout.close(); self.stdout = null; } if (self.stderr) |*stderr| { stderr.close(); self.stderr = null; } } fn cleanupAfterWait(self: *ChildProcess, status: u32) !Term { if (self.err_pipe) |err_pipe| { defer destroyPipe(err_pipe); if (builtin.os.tag == .linux) { var fd = [1]std.os.pollfd{std.os.pollfd{ .fd = err_pipe[0], .events = std.os.POLL.IN, .revents = undefined, }}; // Check if the eventfd buffer stores a non-zero value by polling // it, that's the error code returned by the child process. _ = std.os.poll(&fd, 0) catch unreachable; // According to eventfd(2) the descriptor is readable if the counter // has a value greater than 0 if ((fd[0].revents & std.os.POLL.IN) != 0) { const err_int = try readIntFd(err_pipe[0]); return @as(SpawnError, @errorCast(@errorFromInt(err_int))); } } else { // Write maxInt(ErrInt) to the write end of the err_pipe. This is after // waitpid, so this write is guaranteed to be after the child // pid potentially wrote an error. This way we can do a blocking // read on the error pipe and either get maxInt(ErrInt) (no error) or // an error code. try writeIntFd(err_pipe[1], maxInt(ErrInt)); const err_int = try readIntFd(err_pipe[0]); // Here we potentially return the fork child's error from the parent // pid. if (err_int != maxInt(ErrInt)) { return @as(SpawnError, @errorCast(@errorFromInt(err_int))); } } } return statusToTerm(status); } fn statusToTerm(status: u32) Term { return if (os.W.IFEXITED(status)) Term{ .Exited = os.W.EXITSTATUS(status) } else if (os.W.IFSIGNALED(status)) Term{ .Signal = os.W.TERMSIG(status) } else if (os.W.IFSTOPPED(status)) Term{ .Stopped = os.W.STOPSIG(status) } else Term{ .Unknown = status }; } fn spawnPosix(self: *ChildProcess) SpawnError!void { const pipe_flags = if (io.is_async) os.O.NONBLOCK else 0; const stdin_pipe = if (self.stdin_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined; errdefer if (self.stdin_behavior == StdIo.Pipe) { destroyPipe(stdin_pipe); }; const stdout_pipe = if (self.stdout_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined; errdefer if (self.stdout_behavior == StdIo.Pipe) { destroyPipe(stdout_pipe); }; const stderr_pipe = if (self.stderr_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined; errdefer if (self.stderr_behavior == StdIo.Pipe) { destroyPipe(stderr_pipe); }; const any_ignore = (self.stdin_behavior == StdIo.Ignore or self.stdout_behavior == StdIo.Ignore or self.stderr_behavior == StdIo.Ignore); const dev_null_fd = if (any_ignore) os.openZ("/dev/null", os.O.RDWR, 0) catch |err| switch (err) { error.PathAlreadyExists => unreachable, error.NoSpaceLeft => unreachable, error.FileTooBig => unreachable, error.DeviceBusy => unreachable, error.FileLocksNotSupported => unreachable, error.BadPathName => unreachable, // Windows-only error.InvalidHandle => unreachable, // WASI-only error.WouldBlock => unreachable, error.NetworkNotFound => unreachable, // Windows-only else => |e| return e, } else undefined; defer { if (any_ignore) os.close(dev_null_fd); } var arena_allocator = std.heap.ArenaAllocator.init(self.allocator); defer arena_allocator.deinit(); const arena = arena_allocator.allocator(); // The POSIX standard does not allow malloc() between fork() and execve(), // and `self.allocator` may be a libc allocator. // I have personally observed the child process deadlocking when it tries // to call malloc() due to a heap allocation between fork() and execve(), // in musl v1.1.24. // Additionally, we want to reduce the number of possible ways things // can fail between fork() and execve(). // Therefore, we do all the allocation for the execve() before the fork(). // This means we must do the null-termination of argv and env vars here. const argv_buf = try arena.allocSentinel(?[*:0]const u8, self.argv.len, null); for (self.argv, 0..) |arg, i| argv_buf[i] = (try arena.dupeZ(u8, arg)).ptr; const envp = m: { if (self.env_map) |env_map| { const envp_buf = try createNullDelimitedEnvMap(arena, env_map); break :m envp_buf.ptr; } else if (builtin.link_libc) { break :m std.c.environ; } else if (builtin.output_mode == .Exe) { // Then we have Zig start code and this works. // TODO type-safety for null-termination of `os.environ`. break :m @as([*:null]const ?[*:0]const u8, @ptrCast(os.environ.ptr)); } else { // TODO come up with a solution for this. @compileError("missing std lib enhancement: ChildProcess implementation has no way to collect the environment variables to forward to the child process"); } }; // This pipe is used to communicate errors between the time of fork // and execve from the child process to the parent process. const err_pipe = blk: { if (builtin.os.tag == .linux) { const fd = try os.eventfd(0, linux.EFD.CLOEXEC); // There's no distinction between the readable and the writeable // end with eventfd break :blk [2]os.fd_t{ fd, fd }; } else { break :blk try os.pipe2(os.O.CLOEXEC); } }; errdefer destroyPipe(err_pipe); const pid_result = try os.fork(); if (pid_result == 0) { // we are the child setUpChildIo(self.stdin_behavior, stdin_pipe[0], os.STDIN_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err); setUpChildIo(self.stdout_behavior, stdout_pipe[1], os.STDOUT_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err); setUpChildIo(self.stderr_behavior, stderr_pipe[1], os.STDERR_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err); if (self.stdin_behavior == .Pipe) { os.close(stdin_pipe[0]); os.close(stdin_pipe[1]); } if (self.stdout_behavior == .Pipe) { os.close(stdout_pipe[0]); os.close(stdout_pipe[1]); } if (self.stderr_behavior == .Pipe) { os.close(stderr_pipe[0]); os.close(stderr_pipe[1]); } if (self.cwd_dir) |cwd| { os.fchdir(cwd.fd) catch |err| forkChildErrReport(err_pipe[1], err); } else if (self.cwd) |cwd| { os.chdir(cwd) catch |err| forkChildErrReport(err_pipe[1], err); } if (self.gid) |gid| { os.setregid(gid, gid) catch |err| forkChildErrReport(err_pipe[1], err); } if (self.uid) |uid| { os.setreuid(uid, uid) catch |err| forkChildErrReport(err_pipe[1], err); } const err = switch (self.expand_arg0) { .expand => os.execvpeZ_expandArg0(.expand, argv_buf.ptr[0].?, argv_buf.ptr, envp), .no_expand => os.execvpeZ_expandArg0(.no_expand, argv_buf.ptr[0].?, argv_buf.ptr, envp), }; forkChildErrReport(err_pipe[1], err); } // we are the parent const pid = @as(i32, @intCast(pid_result)); if (self.stdin_behavior == StdIo.Pipe) { self.stdin = File{ .handle = stdin_pipe[1] }; } else { self.stdin = null; } if (self.stdout_behavior == StdIo.Pipe) { self.stdout = File{ .handle = stdout_pipe[0] }; } else { self.stdout = null; } if (self.stderr_behavior == StdIo.Pipe) { self.stderr = File{ .handle = stderr_pipe[0] }; } else { self.stderr = null; } self.id = pid; self.err_pipe = err_pipe; self.term = null; if (self.stdin_behavior == StdIo.Pipe) { os.close(stdin_pipe[0]); } if (self.stdout_behavior == StdIo.Pipe) { os.close(stdout_pipe[1]); } if (self.stderr_behavior == StdIo.Pipe) { os.close(stderr_pipe[1]); } } fn spawnWindows(self: *ChildProcess) SpawnError!void { const saAttr = windows.SECURITY_ATTRIBUTES{ .nLength = @sizeOf(windows.SECURITY_ATTRIBUTES), .bInheritHandle = windows.TRUE, .lpSecurityDescriptor = null, }; const any_ignore = (self.stdin_behavior == StdIo.Ignore or self.stdout_behavior == StdIo.Ignore or self.stderr_behavior == StdIo.Ignore); const nul_handle = if (any_ignore) // "\Device\Null" or "\??\NUL" windows.OpenFile(&[_]u16{ '\\', 'D', 'e', 'v', 'i', 'c', 'e', '\\', 'N', 'u', 'l', 'l' }, .{ .access_mask = windows.GENERIC_READ | windows.SYNCHRONIZE, .share_access = windows.FILE_SHARE_READ, .creation = windows.OPEN_EXISTING, .io_mode = .blocking, }) catch |err| switch (err) { error.PathAlreadyExists => unreachable, // not possible for "NUL" error.PipeBusy => unreachable, // not possible for "NUL" error.FileNotFound => unreachable, // not possible for "NUL" error.AccessDenied => unreachable, // not possible for "NUL" error.NameTooLong => unreachable, // not possible for "NUL" error.WouldBlock => unreachable, // not possible for "NUL" error.NetworkNotFound => unreachable, // not possible for "NUL" else => |e| return e, } else undefined; defer { if (any_ignore) os.close(nul_handle); } if (any_ignore) { try windows.SetHandleInformation(nul_handle, windows.HANDLE_FLAG_INHERIT, 0); } var g_hChildStd_IN_Rd: ?windows.HANDLE = null; var g_hChildStd_IN_Wr: ?windows.HANDLE = null; switch (self.stdin_behavior) { StdIo.Pipe => { try windowsMakePipeIn(&g_hChildStd_IN_Rd, &g_hChildStd_IN_Wr, &saAttr); }, StdIo.Ignore => { g_hChildStd_IN_Rd = nul_handle; }, StdIo.Inherit => { g_hChildStd_IN_Rd = windows.GetStdHandle(windows.STD_INPUT_HANDLE) catch null; }, StdIo.Close => { g_hChildStd_IN_Rd = null; }, } errdefer if (self.stdin_behavior == StdIo.Pipe) { windowsDestroyPipe(g_hChildStd_IN_Rd, g_hChildStd_IN_Wr); }; var g_hChildStd_OUT_Rd: ?windows.HANDLE = null; var g_hChildStd_OUT_Wr: ?windows.HANDLE = null; switch (self.stdout_behavior) { StdIo.Pipe => { try windowsMakeAsyncPipe(&g_hChildStd_OUT_Rd, &g_hChildStd_OUT_Wr, &saAttr); }, StdIo.Ignore => { g_hChildStd_OUT_Wr = nul_handle; }, StdIo.Inherit => { g_hChildStd_OUT_Wr = windows.GetStdHandle(windows.STD_OUTPUT_HANDLE) catch null; }, StdIo.Close => { g_hChildStd_OUT_Wr = null; }, } errdefer if (self.stdin_behavior == StdIo.Pipe) { windowsDestroyPipe(g_hChildStd_OUT_Rd, g_hChildStd_OUT_Wr); }; var g_hChildStd_ERR_Rd: ?windows.HANDLE = null; var g_hChildStd_ERR_Wr: ?windows.HANDLE = null; switch (self.stderr_behavior) { StdIo.Pipe => { try windowsMakeAsyncPipe(&g_hChildStd_ERR_Rd, &g_hChildStd_ERR_Wr, &saAttr); }, StdIo.Ignore => { g_hChildStd_ERR_Wr = nul_handle; }, StdIo.Inherit => { g_hChildStd_ERR_Wr = windows.GetStdHandle(windows.STD_ERROR_HANDLE) catch null; }, StdIo.Close => { g_hChildStd_ERR_Wr = null; }, } errdefer if (self.stdin_behavior == StdIo.Pipe) { windowsDestroyPipe(g_hChildStd_ERR_Rd, g_hChildStd_ERR_Wr); }; const cmd_line = try windowsCreateCommandLine(self.allocator, self.argv); defer self.allocator.free(cmd_line); var siStartInfo = windows.STARTUPINFOW{ .cb = @sizeOf(windows.STARTUPINFOW), .hStdError = g_hChildStd_ERR_Wr, .hStdOutput = g_hChildStd_OUT_Wr, .hStdInput = g_hChildStd_IN_Rd, .dwFlags = windows.STARTF_USESTDHANDLES, .lpReserved = null, .lpDesktop = null, .lpTitle = null, .dwX = 0, .dwY = 0, .dwXSize = 0, .dwYSize = 0, .dwXCountChars = 0, .dwYCountChars = 0, .dwFillAttribute = 0, .wShowWindow = 0, .cbReserved2 = 0, .lpReserved2 = null, }; var piProcInfo: windows.PROCESS_INFORMATION = undefined; const cwd_w = if (self.cwd) |cwd| try unicode.utf8ToUtf16LeWithNull(self.allocator, cwd) else null; defer if (cwd_w) |cwd| self.allocator.free(cwd); const cwd_w_ptr = if (cwd_w) |cwd| cwd.ptr else null; const maybe_envp_buf = if (self.env_map) |env_map| try createWindowsEnvBlock(self.allocator, env_map) else null; defer if (maybe_envp_buf) |envp_buf| self.allocator.free(envp_buf); const envp_ptr = if (maybe_envp_buf) |envp_buf| envp_buf.ptr else null; const app_name_utf8 = self.argv[0]; const app_name_is_absolute = fs.path.isAbsolute(app_name_utf8); // the cwd set in ChildProcess is in effect when choosing the executable path // to match posix semantics var cwd_path_w_needs_free = false; const cwd_path_w = x: { // If the app name is absolute, then we need to use its dirname as the cwd if (app_name_is_absolute) { cwd_path_w_needs_free = true; const dir = fs.path.dirname(app_name_utf8).?; break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, dir); } else if (self.cwd) |cwd| { cwd_path_w_needs_free = true; break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, cwd); } else { break :x &[_:0]u16{}; // empty for cwd } }; defer if (cwd_path_w_needs_free) self.allocator.free(cwd_path_w); // If the app name has more than just a filename, then we need to separate that // into the basename and dirname and use the dirname as an addition to the cwd // path. This is because NtQueryDirectoryFile cannot accept FileName params with // path separators. const app_basename_utf8 = fs.path.basename(app_name_utf8); // If the app name is absolute, then the cwd will already have the app's dirname in it, // so only populate app_dirname if app name is a relative path with > 0 path separators. const maybe_app_dirname_utf8 = if (!app_name_is_absolute) fs.path.dirname(app_name_utf8) else null; const app_dirname_w: ?[:0]u16 = x: { if (maybe_app_dirname_utf8) |app_dirname_utf8| { break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, app_dirname_utf8); } break :x null; }; defer if (app_dirname_w != null) self.allocator.free(app_dirname_w.?); const app_name_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, app_basename_utf8); defer self.allocator.free(app_name_w); const cmd_line_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, cmd_line); defer self.allocator.free(cmd_line_w); run: { const PATH: [:0]const u16 = std.os.getenvW(unicode.utf8ToUtf16LeStringLiteral("PATH")) orelse &[_:0]u16{}; const PATHEXT: [:0]const u16 = std.os.getenvW(unicode.utf8ToUtf16LeStringLiteral("PATHEXT")) orelse &[_:0]u16{}; var app_buf = std.ArrayListUnmanaged(u16){}; defer app_buf.deinit(self.allocator); try app_buf.appendSlice(self.allocator, app_name_w); var dir_buf = std.ArrayListUnmanaged(u16){}; defer dir_buf.deinit(self.allocator); if (cwd_path_w.len > 0) { try dir_buf.appendSlice(self.allocator, cwd_path_w); } if (app_dirname_w) |app_dir| { if (dir_buf.items.len > 0) try dir_buf.append(self.allocator, fs.path.sep); try dir_buf.appendSlice(self.allocator, app_dir); } if (dir_buf.items.len > 0) { // Need to normalize the path, openDirW can't handle things like double backslashes const normalized_len = windows.normalizePath(u16, dir_buf.items) catch return error.BadPathName; dir_buf.shrinkRetainingCapacity(normalized_len); } windowsCreateProcessPathExt(self.allocator, &dir_buf, &app_buf, PATHEXT, cmd_line_w.ptr, envp_ptr, cwd_w_ptr, &siStartInfo, &piProcInfo) catch |no_path_err| { var original_err = switch (no_path_err) { error.FileNotFound, error.InvalidExe, error.AccessDenied => |e| e, error.UnrecoverableInvalidExe => return error.InvalidExe, else => |e| return e, }; // If the app name had path separators, that disallows PATH searching, // and there's no need to search the PATH if the app name is absolute. // We still search the path if the cwd is absolute because of the // "cwd set in ChildProcess is in effect when choosing the executable path // to match posix semantics" behavior--we don't want to skip searching // the PATH just because we were trying to set the cwd of the child process. if (app_dirname_w != null or app_name_is_absolute) { return original_err; } var it = mem.tokenizeScalar(u16, PATH, ';'); while (it.next()) |search_path| { dir_buf.clearRetainingCapacity(); try dir_buf.appendSlice(self.allocator, search_path); // Need to normalize the path, some PATH values can contain things like double // backslashes which openDirW can't handle const normalized_len = windows.normalizePath(u16, dir_buf.items) catch continue; dir_buf.shrinkRetainingCapacity(normalized_len); if (windowsCreateProcessPathExt(self.allocator, &dir_buf, &app_buf, PATHEXT, cmd_line_w.ptr, envp_ptr, cwd_w_ptr, &siStartInfo, &piProcInfo)) { break :run; } else |err| switch (err) { error.FileNotFound, error.AccessDenied, error.InvalidExe => continue, error.UnrecoverableInvalidExe => return error.InvalidExe, else => |e| return e, } } else { return original_err; } }; } if (g_hChildStd_IN_Wr) |h| { self.stdin = File{ .handle = h }; } else { self.stdin = null; } if (g_hChildStd_OUT_Rd) |h| { self.stdout = File{ .handle = h }; } else { self.stdout = null; } if (g_hChildStd_ERR_Rd) |h| { self.stderr = File{ .handle = h }; } else { self.stderr = null; } self.id = piProcInfo.hProcess; self.thread_handle = piProcInfo.hThread; self.term = null; if (self.stdin_behavior == StdIo.Pipe) { os.close(g_hChildStd_IN_Rd.?); } if (self.stderr_behavior == StdIo.Pipe) { os.close(g_hChildStd_ERR_Wr.?); } if (self.stdout_behavior == StdIo.Pipe) { os.close(g_hChildStd_OUT_Wr.?); } } fn setUpChildIo(stdio: StdIo, pipe_fd: i32, std_fileno: i32, dev_null_fd: i32) !void { switch (stdio) { .Pipe => try os.dup2(pipe_fd, std_fileno), .Close => os.close(std_fileno), .Inherit => {}, .Ignore => try os.dup2(dev_null_fd, std_fileno), } } }; fn windowsCreateProcessPathExt( allocator: mem.Allocator, dir_buf: *std.ArrayListUnmanaged(u16), app_buf: *std.ArrayListUnmanaged(u16), pathext: [:0]const u16, cmd_line: [*:0]u16, envp_ptr: ?[*]u16, cwd_ptr: ?[*:0]u16, lpStartupInfo: *windows.STARTUPINFOW, lpProcessInformation: *windows.PROCESS_INFORMATION, ) !void { const app_name_len = app_buf.items.len; const dir_path_len = dir_buf.items.len; if (app_name_len == 0) return error.FileNotFound; defer app_buf.shrinkRetainingCapacity(app_name_len); defer dir_buf.shrinkRetainingCapacity(dir_path_len); // The name of the game here is to avoid CreateProcessW calls at all costs, // and only ever try calling it when we have a real candidate for execution. // Secondarily, we want to minimize the number of syscalls used when checking // for each PATHEXT-appended version of the app name. // // An overview of the technique used: // - Open the search directory for iteration (either cwd or a path from PATH) // - Use NtQueryDirectoryFile with a wildcard filename of ` |
Test:windowsCreateProcessSupportsExtension Expects |
test "windowsCreateProcessSupportsExtension" { try std.testing.expectEqual(CreateProcessSupportedExtension.exe, windowsCreateProcessSupportsExtension(&[_]u16{ '.', 'e', 'X', 'e' }).?); try std.testing.expect(windowsCreateProcessSupportsExtension(&[_]u16{ '.', 'e', 'X', 'e', 'c' }) == null); } fn windowsCreateCommandLine(allocator: mem.Allocator, argv: []const []const u8) ![:0]u8 { var buf = std.ArrayList(u8).init(allocator); defer buf.deinit(); for (argv, 0..) |arg, arg_i| { if (arg_i != 0) try buf.append(' '); if (mem.indexOfAny(u8, arg, " \t\n\"") == null) { try buf.appendSlice(arg); continue; } try buf.append('"'); var backslash_count: usize = 0; for (arg) |byte| { switch (byte) { '\\' => backslash_count += 1, '"' => { try buf.appendNTimes('\\', backslash_count * 2 + 1); try buf.append('"'); backslash_count = 0; }, else => { try buf.appendNTimes('\\', backslash_count); try buf.append(byte); backslash_count = 0; }, } } try buf.appendNTimes('\\', backslash_count * 2); try buf.append('"'); } return buf.toOwnedSliceSentinel(0); } fn windowsDestroyPipe(rd: ?windows.HANDLE, wr: ?windows.HANDLE) void { if (rd) |h| os.close(h); if (wr) |h| os.close(h); } fn windowsMakePipeIn(rd: *?windows.HANDLE, wr: *?windows.HANDLE, sattr: *const windows.SECURITY_ATTRIBUTES) !void { var rd_h: windows.HANDLE = undefined; var wr_h: windows.HANDLE = undefined; try windows.CreatePipe(&rd_h, &wr_h, sattr); errdefer windowsDestroyPipe(rd_h, wr_h); try windows.SetHandleInformation(wr_h, windows.HANDLE_FLAG_INHERIT, 0); rd.* = rd_h; wr.* = wr_h; } var pipe_name_counter = std.atomic.Atomic(u32).init(1); fn windowsMakeAsyncPipe(rd: *?windows.HANDLE, wr: *?windows.HANDLE, sattr: *const windows.SECURITY_ATTRIBUTES) !void { var tmp_bufw: [128]u16 = undefined; // Anonymous pipes are built upon Named pipes. // https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-createpipe // Asynchronous (overlapped) read and write operations are not supported by anonymous pipes. // https://docs.microsoft.com/en-us/windows/win32/ipc/anonymous-pipe-operations const pipe_path = blk: { var tmp_buf: [128]u8 = undefined; // Forge a random path for the pipe. const pipe_path = std.fmt.bufPrintZ( &tmp_buf, "\\\\.\\pipe\\zig-childprocess-{d}-{d}", .{ windows.kernel32.GetCurrentProcessId(), pipe_name_counter.fetchAdd(1, .Monotonic) }, ) catch unreachable; const len = std.unicode.utf8ToUtf16Le(&tmp_bufw, pipe_path) catch unreachable; tmp_bufw[len] = 0; break :blk tmp_bufw[0..len :0]; }; // Create the read handle that can be used with overlapped IO ops. const read_handle = windows.kernel32.CreateNamedPipeW( pipe_path.ptr, windows.PIPE_ACCESS_INBOUND | windows.FILE_FLAG_OVERLAPPED, windows.PIPE_TYPE_BYTE, 1, 4096, 4096, 0, sattr, ); if (read_handle == windows.INVALID_HANDLE_VALUE) { switch (windows.kernel32.GetLastError()) { else => |err| return windows.unexpectedError(err), } } errdefer os.close(read_handle); var sattr_copy = sattr.*; const write_handle = windows.kernel32.CreateFileW( pipe_path.ptr, windows.GENERIC_WRITE, 0, &sattr_copy, windows.OPEN_EXISTING, windows.FILE_ATTRIBUTE_NORMAL, null, ); if (write_handle == windows.INVALID_HANDLE_VALUE) { switch (windows.kernel32.GetLastError()) { else => |err| return windows.unexpectedError(err), } } errdefer os.close(write_handle); try windows.SetHandleInformation(read_handle, windows.HANDLE_FLAG_INHERIT, 0); rd.* = read_handle; wr.* = write_handle; } fn destroyPipe(pipe: [2]os.fd_t) void { os.close(pipe[0]); if (pipe[0] != pipe[1]) os.close(pipe[1]); } // Child of fork calls this to report an error to the fork parent. // Then the child exits. fn forkChildErrReport(fd: i32, err: ChildProcess.SpawnError) noreturn { writeIntFd(fd, @as(ErrInt, @intFromError(err))) catch {}; // If we're linking libc, some naughty applications may have registered atexit handlers // which we really do not want to run in the fork child. I caught LLVM doing this and // it caused a deadlock instead of doing an exit syscall. In the words of Avril Lavigne, // "Why'd you have to go and make things so complicated?" if (builtin.link_libc) { // The _exit(2) function does nothing but make the exit syscall, unlike exit(3) std.c._exit(1); } os.exit(1); } const ErrInt = std.meta.Int(.unsigned, @sizeOf(anyerror) * 8); fn writeIntFd(fd: i32, value: ErrInt) !void { const file = File{ .handle = fd, .capable_io_mode = .blocking, .intended_io_mode = .blocking, }; file.writer().writeInt(u64, @intCast(value), .little) catch return error.SystemResources; } fn readIntFd(fd: i32) !ErrInt { const file = File{ .handle = fd, .capable_io_mode = .blocking, .intended_io_mode = .blocking, }; return @as(ErrInt, @intCast(file.reader().readInt(u64, .little) catch return error.SystemResources)); } |
createWindowsEnvBlock()Caller must dealloc. Caller must free result. |
pub fn createWindowsEnvBlock(allocator: mem.Allocator, env_map: *const EnvMap) ![]u16 { // count bytes needed const max_chars_needed = x: { var max_chars_needed: usize = 4; // 4 for the final 4 null bytes var it = env_map.iterator(); while (it.next()) |pair| { // +1 for '=' // +1 for null byte max_chars_needed += pair.key_ptr.len + pair.value_ptr.len + 2; } break :x max_chars_needed; }; const result = try allocator.alloc(u16, max_chars_needed); errdefer allocator.free(result); var it = env_map.iterator(); var i: usize = 0; while (it.next()) |pair| { i += try unicode.utf8ToUtf16Le(result[i..], pair.key_ptr.*); result[i] = '='; i += 1; i += try unicode.utf8ToUtf16Le(result[i..], pair.value_ptr.*); result[i] = 0; i += 1; } result[i] = 0; i += 1; result[i] = 0; i += 1; result[i] = 0; i += 1; result[i] = 0; i += 1; return try allocator.realloc(result, i); } |
createNullDelimitedEnvMap() |
pub fn createNullDelimitedEnvMap(arena: mem.Allocator, env_map: *const EnvMap) ![:null]?[*:0]u8 { const envp_count = env_map.count(); const envp_buf = try arena.allocSentinel(?[*:0]u8, envp_count, null); { var it = env_map.iterator(); var i: usize = 0; while (it.next()) |pair| : (i += 1) { const env_buf = try arena.allocSentinel(u8, pair.key_ptr.len + pair.value_ptr.len + 1, 0); @memcpy(env_buf[0..pair.key_ptr.len], pair.key_ptr.*); env_buf[pair.key_ptr.len] = '='; @memcpy(env_buf[pair.key_ptr.len + 1 ..][0..pair.value_ptr.len], pair.value_ptr.*); envp_buf[i] = env_buf.ptr; } assert(i == envp_count); } return envp_buf; } |
Test:createNullDelimitedEnvMap |
test "createNullDelimitedEnvMap" { const testing = std.testing; const allocator = testing.allocator; var envmap = EnvMap.init(allocator); defer envmap.deinit(); try envmap.put("HOME", "/home/ifreund"); try envmap.put("WAYLAND_DISPLAY", "wayland-1"); try envmap.put("DISPLAY", ":1"); try envmap.put("DEBUGINFOD_URLS", " "); try envmap.put("XCURSOR_SIZE", "24"); var arena = std.heap.ArenaAllocator.init(allocator); defer arena.deinit(); const environ = try createNullDelimitedEnvMap(arena.allocator(), &envmap); try testing.expectEqual(@as(usize, 5), environ.len); inline for (.{ "HOME=/home/ifreund", "WAYLAND_DISPLAY=wayland-1", "DISPLAY=:1", "DEBUGINFOD_URLS= ", "XCURSOR_SIZE=24", }) |target| { for (environ) |variable| { if (mem.eql(u8, mem.span(variable orelse continue), target)) break; } else { try testing.expect(false); // Environment variable not found } } } |
Generated by zstd-browse2 on 2023-11-04 14:12:36 -0400. |