zig/lib/std / child_process.zig

const std = @import("std.zig");
const builtin = @import("builtin");
const unicode = std.unicode;
const io = std.io;
const fs = std.fs;
const os = std.os;
const process = std.process;
const File = std.fs.File;
const windows = os.windows;
const linux = os.linux;
const mem = std.mem;
const math = std.math;
const debug = std.debug;
const EnvMap = process.EnvMap;
const maxInt = std.math.maxInt;
const assert = std.debug.assert;

ChildProcess

pub const ChildProcess = struct {
    pub const Id = switch (builtin.os.tag) {
        .windows => windows.HANDLE,
        .wasi => void,
        else => os.pid_t,
    };

    id: Id,
    thread_handle: if (builtin.os.tag == .windows) windows.HANDLE else void,

    allocator: mem.Allocator,

    stdin: ?File,
    stdout: ?File,
    stderr: ?File,

    term: ?(SpawnError!Term),

    argv: []const []const u8,

    env_map: ?*const EnvMap,

    stdin_behavior: StdIo,
    stdout_behavior: StdIo,
    stderr_behavior: StdIo,

    uid: if (builtin.os.tag == .windows or builtin.os.tag == .wasi) void else ?os.uid_t,

    gid: if (builtin.os.tag == .windows or builtin.os.tag == .wasi) void else ?os.gid_t,

    cwd: ?[]const u8,
    cwd_dir: ?fs.Dir = null,

    err_pipe: ?if (builtin.os.tag == .windows) void else [2]os.fd_t,

    expand_arg0: Arg0Expand,

    disable_aslr: bool = false,

    start_suspended: bool = false,

    request_resource_usage_statistics: bool = false,

    resource_usage_statistics: ResourceUsageStatistics = .{},

    pub const ResourceUsageStatistics = struct {
        rusage: @TypeOf(rusage_init) = rusage_init,

getMaxRss()

Available after calling spawn(). This becomes undefined after calling wait(). On Windows this is the hProcess. On POSIX this is the pid. Leave as null to use the current env map using the supplied allocator. Set to change the user id when spawning the child process. Set to change the group id when spawning the child process. Set to change the current working directory when spawning the child process. Set to change the current working directory when spawning the child process. This is not yet implemented for Windows. See https://github.com/ziglang/zig/issues/5190 Once that is done, cwd will be deprecated in favor of this field. Darwin-only. Disable ASLR for the child process. Darwin-only. Start child process in suspended state as if SIGSTOP was sent. Set to true to obtain rusage information for the child process. Depending on the target platform and implementation status, the requested statistics may or may not be available. If they are available, then the resource_usage_statistics field will be populated after calling wait. On Linux and Darwin, this obtains rusage statistics from wait4(). This is available after calling wait if request_resource_usage_statistics was set to true before calling spawn. Returns the peak resident set size of the child process, in bytes, if available.

        pub inline fn getMaxRss(rus: ResourceUsageStatistics) ?usize {
            switch (builtin.os.tag) {
                .linux => {
                    if (rus.rusage) |ru| {
                        return @as(usize, @intCast(ru.maxrss)) * 1024;
                    } else {
                        return null;
                    }
                },
                .windows => {
                    if (rus.rusage) |ru| {
                        return ru.PeakWorkingSetSize;
                    } else {
                        return null;
                    }
                },
                .macos, .ios => {
                    if (rus.rusage) |ru| {
                        // Darwin oddly reports in bytes instead of kilobytes.
                        return @as(usize, @intCast(ru.maxrss));
                    } else {
                        return null;
                    }
                },
                else => return null,
            }
        }

        const rusage_init = switch (builtin.os.tag) {
            .linux, .macos, .ios => @as(?std.os.rusage, null),
            .windows => @as(?windows.VM_COUNTERS, null),
            else => {},
        };
    };

    pub const Arg0Expand = os.Arg0Expand;

    pub const SpawnError = error{
        OutOfMemory,

        NoDevice,

        InvalidUtf8,

        CurrentWorkingDirectoryUnlinked,
    } ||
        os.ExecveError ||
        os.SetIdError ||
        os.ChangeCurDirError ||
        windows.CreateProcessError ||
        windows.GetProcessMemoryInfoError ||
        windows.WaitForSingleObjectError;

    pub const Term = union(enum) {
        Exited: u8,
        Signal: u32,
        Stopped: u32,
        Unknown: u32,
    };

    pub const StdIo = enum {
        Inherit,
        Ignore,
        Pipe,
        Close,
    };

init()

POSIX-only. StdIo.Ignore was selected and opening /dev/null returned ENODEV. Windows-only. One of: * cwd was provided and it could not be re-encoded into UTF16LE, or * The PATH or PATHEXT environment variable contained invalid UTF-8. Windows-only. cwd was provided, but the path did not exist when spawning the child process. First argument in argv is the executable.

    pub fn init(argv: []const []const u8, allocator: mem.Allocator) ChildProcess {
        return .{
            .allocator = allocator,
            .argv = argv,
            .id = undefined,
            .thread_handle = undefined,
            .err_pipe = null,
            .term = null,
            .env_map = null,
            .cwd = null,
            .uid = if (builtin.os.tag == .windows or builtin.os.tag == .wasi) {} else null,
            .gid = if (builtin.os.tag == .windows or builtin.os.tag == .wasi) {} else null,
            .stdin = null,
            .stdout = null,
            .stderr = null,
            .stdin_behavior = StdIo.Inherit,
            .stdout_behavior = StdIo.Inherit,
            .stderr_behavior = StdIo.Inherit,
            .expand_arg0 = .no_expand,
        };
    }

setUserName()

    pub fn setUserName(self: *ChildProcess, name: []const u8) !void {
        const user_info = try std.process.getUserInfo(name);
        self.uid = user_info.uid;
        self.gid = user_info.gid;
    }

spawn()

On success must call kill or wait. After spawning the id is available.

    pub fn spawn(self: *ChildProcess) SpawnError!void {
        if (!std.process.can_spawn) {
            @compileError("the target operating system cannot spawn processes");
        }

        if (builtin.os.tag == .windows) {
            return self.spawnWindows();
        } else {
            return self.spawnPosix();
        }
    }

spawnAndWait()

    pub fn spawnAndWait(self: *ChildProcess) SpawnError!Term {
        try self.spawn();
        return self.wait();
    }

kill()

Forcibly terminates child process and then cleans up all resources.

    pub fn kill(self: *ChildProcess) !Term {
        if (builtin.os.tag == .windows) {
            return self.killWindows(1);
        } else {
            return self.killPosix();
        }
    }

killWindows()

    pub fn killWindows(self: *ChildProcess, exit_code: windows.UINT) !Term {
        if (self.term) |term| {
            self.cleanupStreams();
            return term;
        }

        windows.TerminateProcess(self.id, exit_code) catch |err| switch (err) {
            error.PermissionDenied => {
                // Usually when TerminateProcess triggers a ACCESS_DENIED error, it
                // indicates that the process has already exited, but there may be
                // some rare edge cases where our process handle no longer has the
                // PROCESS_TERMINATE access right, so let's do another check to make
                // sure the process is really no longer running:
                windows.WaitForSingleObjectEx(self.id, 0, false) catch return err;
                return error.AlreadyTerminated;
            },
            else => return err,
        };
        try self.waitUnwrappedWindows();
        return self.term.?;
    }

killPosix()

    pub fn killPosix(self: *ChildProcess) !Term {
        if (self.term) |term| {
            self.cleanupStreams();
            return term;
        }
        os.kill(self.id, os.SIG.TERM) catch |err| switch (err) {
            error.ProcessNotFound => return error.AlreadyTerminated,
            else => return err,
        };
        try self.waitUnwrapped();
        return self.term.?;
    }

wait()

Blocks until child process terminates and then cleans up all resources.

    pub fn wait(self: *ChildProcess) !Term {
        const term = if (builtin.os.tag == .windows)
            try self.waitWindows()
        else
            try self.waitPosix();

        self.id = undefined;

        return term;
    }

    pub const RunResult = struct {
        term: Term,
        stdout: []u8,
        stderr: []u8,
    };

    fn fifoToOwnedArrayList(fifo: *std.io.PollFifo) std.ArrayList(u8) {
        if (fifo.head > 0) {
            @memcpy(fifo.buf[0..fifo.count], fifo.buf[fifo.head..][0..fifo.count]);
        }
        const result = std.ArrayList(u8){
            .items = fifo.buf[0..fifo.count],
            .capacity = fifo.buf.len,
            .allocator = fifo.allocator,
        };
        fifo.* = std.io.PollFifo.init(fifo.allocator);
        return result;
    }

collectOutput()

Collect the output from the process's stdout and stderr. Will return once all output has been collected. This does not mean that the process has ended. wait should still be called to wait for and clean up the process.

The process must be started with stdout_behavior and stderr_behavior == .Pipe

    pub fn collectOutput(
        child: ChildProcess,
        stdout: *std.ArrayList(u8),
        stderr: *std.ArrayList(u8),
        max_output_bytes: usize,
    ) !void {
        debug.assert(child.stdout_behavior == .Pipe);
        debug.assert(child.stderr_behavior == .Pipe);

        // we could make this work with multiple allocators but YAGNI
        if (stdout.allocator.ptr != stderr.allocator.ptr or
            stdout.allocator.vtable != stderr.allocator.vtable)
            @panic("ChildProcess.collectOutput only supports 1 allocator");

        var poller = std.io.poll(stdout.allocator, enum { stdout, stderr }, .{
            .stdout = child.stdout.?,
            .stderr = child.stderr.?,
        });
        defer poller.deinit();

        while (try poller.poll()) {
            if (poller.fifo(.stdout).count > max_output_bytes)
                return error.StdoutStreamTooLong;
            if (poller.fifo(.stderr).count > max_output_bytes)
                return error.StderrStreamTooLong;
        }

        stdout.* = fifoToOwnedArrayList(poller.fifo(.stdout));
        stderr.* = fifoToOwnedArrayList(poller.fifo(.stderr));
    }

    pub const RunError = os.GetCwdError || os.ReadError || SpawnError || os.PollError || error{
        StdoutStreamTooLong,
        StderrStreamTooLong,
    };

run()

Spawns a child process, waits for it, collecting stdout and stderr, and then returns. If it succeeds, the caller owns result.stdout and result.stderr memory.

    pub fn run(args: struct {
        allocator: mem.Allocator,
        argv: []const []const u8,
        cwd: ?[]const u8 = null,
        cwd_dir: ?fs.Dir = null,
        env_map: ?*const EnvMap = null,
        max_output_bytes: usize = 50 * 1024,
        expand_arg0: Arg0Expand = .no_expand,
    }) RunError!RunResult {
        var child = ChildProcess.init(args.argv, args.allocator);
        child.stdin_behavior = .Ignore;
        child.stdout_behavior = .Pipe;
        child.stderr_behavior = .Pipe;
        child.cwd = args.cwd;
        child.cwd_dir = args.cwd_dir;
        child.env_map = args.env_map;
        child.expand_arg0 = args.expand_arg0;

        var stdout = std.ArrayList(u8).init(args.allocator);
        var stderr = std.ArrayList(u8).init(args.allocator);
        errdefer {
            stdout.deinit();
            stderr.deinit();
        }

        try child.spawn();
        try child.collectOutput(&stdout, &stderr, args.max_output_bytes);

        return RunResult{
            .term = try child.wait(),
            .stdout = try stdout.toOwnedSlice(),
            .stderr = try stderr.toOwnedSlice(),
        };
    }

    fn waitWindows(self: *ChildProcess) !Term {
        if (self.term) |term| {
            self.cleanupStreams();
            return term;
        }

        try self.waitUnwrappedWindows();
        return self.term.?;
    }

    fn waitPosix(self: *ChildProcess) !Term {
        if (self.term) |term| {
            self.cleanupStreams();
            return term;
        }

        try self.waitUnwrapped();
        return self.term.?;
    }

    fn waitUnwrappedWindows(self: *ChildProcess) !void {
        const result = windows.WaitForSingleObjectEx(self.id, windows.INFINITE, false);

        self.term = @as(SpawnError!Term, x: {
            var exit_code: windows.DWORD = undefined;
            if (windows.kernel32.GetExitCodeProcess(self.id, &exit_code) == 0) {
                break :x Term{ .Unknown = 0 };
            } else {
                break :x Term{ .Exited = @as(u8, @truncate(exit_code)) };
            }
        });

        if (self.request_resource_usage_statistics) {
            self.resource_usage_statistics.rusage = try windows.GetProcessMemoryInfo(self.id);
        }

        os.close(self.id);
        os.close(self.thread_handle);
        self.cleanupStreams();
        return result;
    }

    fn waitUnwrapped(self: *ChildProcess) !void {
        const res: os.WaitPidResult = res: {
            if (self.request_resource_usage_statistics) {
                switch (builtin.os.tag) {
                    .linux, .macos, .ios => {
                        var ru: std.os.rusage = undefined;
                        const res = os.wait4(self.id, 0, &ru);
                        self.resource_usage_statistics.rusage = ru;
                        break :res res;
                    },
                    else => {},
                }
            }

            break :res os.waitpid(self.id, 0);
        };
        const status = res.status;
        self.cleanupStreams();
        self.handleWaitResult(status);
    }

    fn handleWaitResult(self: *ChildProcess, status: u32) void {
        self.term = self.cleanupAfterWait(status);
    }

    fn cleanupStreams(self: *ChildProcess) void {
        if (self.stdin) |*stdin| {
            stdin.close();
            self.stdin = null;
        }
        if (self.stdout) |*stdout| {
            stdout.close();
            self.stdout = null;
        }
        if (self.stderr) |*stderr| {
            stderr.close();
            self.stderr = null;
        }
    }

    fn cleanupAfterWait(self: *ChildProcess, status: u32) !Term {
        if (self.err_pipe) |err_pipe| {
            defer destroyPipe(err_pipe);

            if (builtin.os.tag == .linux) {
                var fd = [1]std.os.pollfd{std.os.pollfd{
                    .fd = err_pipe[0],
                    .events = std.os.POLL.IN,
                    .revents = undefined,
                }};

                // Check if the eventfd buffer stores a non-zero value by polling
                // it, that's the error code returned by the child process.
                _ = std.os.poll(&fd, 0) catch unreachable;

                // According to eventfd(2) the descriptor is readable if the counter
                // has a value greater than 0
                if ((fd[0].revents & std.os.POLL.IN) != 0) {
                    const err_int = try readIntFd(err_pipe[0]);
                    return @as(SpawnError, @errorCast(@errorFromInt(err_int)));
                }
            } else {
                // Write maxInt(ErrInt) to the write end of the err_pipe. This is after
                // waitpid, so this write is guaranteed to be after the child
                // pid potentially wrote an error. This way we can do a blocking
                // read on the error pipe and either get maxInt(ErrInt) (no error) or
                // an error code.
                try writeIntFd(err_pipe[1], maxInt(ErrInt));
                const err_int = try readIntFd(err_pipe[0]);
                // Here we potentially return the fork child's error from the parent
                // pid.
                if (err_int != maxInt(ErrInt)) {
                    return @as(SpawnError, @errorCast(@errorFromInt(err_int)));
                }
            }
        }

        return statusToTerm(status);
    }

    fn statusToTerm(status: u32) Term {
        return if (os.W.IFEXITED(status))
            Term{ .Exited = os.W.EXITSTATUS(status) }
        else if (os.W.IFSIGNALED(status))
            Term{ .Signal = os.W.TERMSIG(status) }
        else if (os.W.IFSTOPPED(status))
            Term{ .Stopped = os.W.STOPSIG(status) }
        else
            Term{ .Unknown = status };
    }

    fn spawnPosix(self: *ChildProcess) SpawnError!void {
        const pipe_flags = if (io.is_async) os.O.NONBLOCK else 0;
        const stdin_pipe = if (self.stdin_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined;
        errdefer if (self.stdin_behavior == StdIo.Pipe) {
            destroyPipe(stdin_pipe);
        };

        const stdout_pipe = if (self.stdout_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined;
        errdefer if (self.stdout_behavior == StdIo.Pipe) {
            destroyPipe(stdout_pipe);
        };

        const stderr_pipe = if (self.stderr_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined;
        errdefer if (self.stderr_behavior == StdIo.Pipe) {
            destroyPipe(stderr_pipe);
        };

        const any_ignore = (self.stdin_behavior == StdIo.Ignore or self.stdout_behavior == StdIo.Ignore or self.stderr_behavior == StdIo.Ignore);
        const dev_null_fd = if (any_ignore)
            os.openZ("/dev/null", os.O.RDWR, 0) catch |err| switch (err) {
                error.PathAlreadyExists => unreachable,
                error.NoSpaceLeft => unreachable,
                error.FileTooBig => unreachable,
                error.DeviceBusy => unreachable,
                error.FileLocksNotSupported => unreachable,
                error.BadPathName => unreachable, // Windows-only
                error.InvalidHandle => unreachable, // WASI-only
                error.WouldBlock => unreachable,
                error.NetworkNotFound => unreachable, // Windows-only
                else => |e| return e,
            }
        else
            undefined;
        defer {
            if (any_ignore) os.close(dev_null_fd);
        }

        var arena_allocator = std.heap.ArenaAllocator.init(self.allocator);
        defer arena_allocator.deinit();
        const arena = arena_allocator.allocator();

        // The POSIX standard does not allow malloc() between fork() and execve(),
        // and `self.allocator` may be a libc allocator.
        // I have personally observed the child process deadlocking when it tries
        // to call malloc() due to a heap allocation between fork() and execve(),
        // in musl v1.1.24.
        // Additionally, we want to reduce the number of possible ways things
        // can fail between fork() and execve().
        // Therefore, we do all the allocation for the execve() before the fork().
        // This means we must do the null-termination of argv and env vars here.
        const argv_buf = try arena.allocSentinel(?[*:0]const u8, self.argv.len, null);
        for (self.argv, 0..) |arg, i| argv_buf[i] = (try arena.dupeZ(u8, arg)).ptr;

        const envp = m: {
            if (self.env_map) |env_map| {
                const envp_buf = try createNullDelimitedEnvMap(arena, env_map);
                break :m envp_buf.ptr;
            } else if (builtin.link_libc) {
                break :m std.c.environ;
            } else if (builtin.output_mode == .Exe) {
                // Then we have Zig start code and this works.
                // TODO type-safety for null-termination of `os.environ`.
                break :m @as([*:null]const ?[*:0]const u8, @ptrCast(os.environ.ptr));
            } else {
                // TODO come up with a solution for this.
                @compileError("missing std lib enhancement: ChildProcess implementation has no way to collect the environment variables to forward to the child process");
            }
        };

        // This pipe is used to communicate errors between the time of fork
        // and execve from the child process to the parent process.
        const err_pipe = blk: {
            if (builtin.os.tag == .linux) {
                const fd = try os.eventfd(0, linux.EFD.CLOEXEC);
                // There's no distinction between the readable and the writeable
                // end with eventfd
                break :blk [2]os.fd_t{ fd, fd };
            } else {
                break :blk try os.pipe2(os.O.CLOEXEC);
            }
        };
        errdefer destroyPipe(err_pipe);

        const pid_result = try os.fork();
        if (pid_result == 0) {
            // we are the child
            setUpChildIo(self.stdin_behavior, stdin_pipe[0], os.STDIN_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err);
            setUpChildIo(self.stdout_behavior, stdout_pipe[1], os.STDOUT_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err);
            setUpChildIo(self.stderr_behavior, stderr_pipe[1], os.STDERR_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err);

            if (self.stdin_behavior == .Pipe) {
                os.close(stdin_pipe[0]);
                os.close(stdin_pipe[1]);
            }
            if (self.stdout_behavior == .Pipe) {
                os.close(stdout_pipe[0]);
                os.close(stdout_pipe[1]);
            }
            if (self.stderr_behavior == .Pipe) {
                os.close(stderr_pipe[0]);
                os.close(stderr_pipe[1]);
            }

            if (self.cwd_dir) |cwd| {
                os.fchdir(cwd.fd) catch |err| forkChildErrReport(err_pipe[1], err);
            } else if (self.cwd) |cwd| {
                os.chdir(cwd) catch |err| forkChildErrReport(err_pipe[1], err);
            }

            if (self.gid) |gid| {
                os.setregid(gid, gid) catch |err| forkChildErrReport(err_pipe[1], err);
            }

            if (self.uid) |uid| {
                os.setreuid(uid, uid) catch |err| forkChildErrReport(err_pipe[1], err);
            }

            const err = switch (self.expand_arg0) {
                .expand => os.execvpeZ_expandArg0(.expand, argv_buf.ptr[0].?, argv_buf.ptr, envp),
                .no_expand => os.execvpeZ_expandArg0(.no_expand, argv_buf.ptr[0].?, argv_buf.ptr, envp),
            };
            forkChildErrReport(err_pipe[1], err);
        }

        // we are the parent
        const pid = @as(i32, @intCast(pid_result));
        if (self.stdin_behavior == StdIo.Pipe) {
            self.stdin = File{ .handle = stdin_pipe[1] };
        } else {
            self.stdin = null;
        }
        if (self.stdout_behavior == StdIo.Pipe) {
            self.stdout = File{ .handle = stdout_pipe[0] };
        } else {
            self.stdout = null;
        }
        if (self.stderr_behavior == StdIo.Pipe) {
            self.stderr = File{ .handle = stderr_pipe[0] };
        } else {
            self.stderr = null;
        }

        self.id = pid;
        self.err_pipe = err_pipe;
        self.term = null;

        if (self.stdin_behavior == StdIo.Pipe) {
            os.close(stdin_pipe[0]);
        }
        if (self.stdout_behavior == StdIo.Pipe) {
            os.close(stdout_pipe[1]);
        }
        if (self.stderr_behavior == StdIo.Pipe) {
            os.close(stderr_pipe[1]);
        }
    }

    fn spawnWindows(self: *ChildProcess) SpawnError!void {
        const saAttr = windows.SECURITY_ATTRIBUTES{
            .nLength = @sizeOf(windows.SECURITY_ATTRIBUTES),
            .bInheritHandle = windows.TRUE,
            .lpSecurityDescriptor = null,
        };

        const any_ignore = (self.stdin_behavior == StdIo.Ignore or self.stdout_behavior == StdIo.Ignore or self.stderr_behavior == StdIo.Ignore);

        const nul_handle = if (any_ignore)
            // "\Device\Null" or "\??\NUL"
            windows.OpenFile(&[_]u16{ '\\', 'D', 'e', 'v', 'i', 'c', 'e', '\\', 'N', 'u', 'l', 'l' }, .{
                .access_mask = windows.GENERIC_READ | windows.SYNCHRONIZE,
                .share_access = windows.FILE_SHARE_READ,
                .creation = windows.OPEN_EXISTING,
                .io_mode = .blocking,
            }) catch |err| switch (err) {
                error.PathAlreadyExists => unreachable, // not possible for "NUL"
                error.PipeBusy => unreachable, // not possible for "NUL"
                error.FileNotFound => unreachable, // not possible for "NUL"
                error.AccessDenied => unreachable, // not possible for "NUL"
                error.NameTooLong => unreachable, // not possible for "NUL"
                error.WouldBlock => unreachable, // not possible for "NUL"
                error.NetworkNotFound => unreachable, // not possible for "NUL"
                else => |e| return e,
            }
        else
            undefined;
        defer {
            if (any_ignore) os.close(nul_handle);
        }
        if (any_ignore) {
            try windows.SetHandleInformation(nul_handle, windows.HANDLE_FLAG_INHERIT, 0);
        }

        var g_hChildStd_IN_Rd: ?windows.HANDLE = null;
        var g_hChildStd_IN_Wr: ?windows.HANDLE = null;
        switch (self.stdin_behavior) {
            StdIo.Pipe => {
                try windowsMakePipeIn(&g_hChildStd_IN_Rd, &g_hChildStd_IN_Wr, &saAttr);
            },
            StdIo.Ignore => {
                g_hChildStd_IN_Rd = nul_handle;
            },
            StdIo.Inherit => {
                g_hChildStd_IN_Rd = windows.GetStdHandle(windows.STD_INPUT_HANDLE) catch null;
            },
            StdIo.Close => {
                g_hChildStd_IN_Rd = null;
            },
        }
        errdefer if (self.stdin_behavior == StdIo.Pipe) {
            windowsDestroyPipe(g_hChildStd_IN_Rd, g_hChildStd_IN_Wr);
        };

        var g_hChildStd_OUT_Rd: ?windows.HANDLE = null;
        var g_hChildStd_OUT_Wr: ?windows.HANDLE = null;
        switch (self.stdout_behavior) {
            StdIo.Pipe => {
                try windowsMakeAsyncPipe(&g_hChildStd_OUT_Rd, &g_hChildStd_OUT_Wr, &saAttr);
            },
            StdIo.Ignore => {
                g_hChildStd_OUT_Wr = nul_handle;
            },
            StdIo.Inherit => {
                g_hChildStd_OUT_Wr = windows.GetStdHandle(windows.STD_OUTPUT_HANDLE) catch null;
            },
            StdIo.Close => {
                g_hChildStd_OUT_Wr = null;
            },
        }
        errdefer if (self.stdin_behavior == StdIo.Pipe) {
            windowsDestroyPipe(g_hChildStd_OUT_Rd, g_hChildStd_OUT_Wr);
        };

        var g_hChildStd_ERR_Rd: ?windows.HANDLE = null;
        var g_hChildStd_ERR_Wr: ?windows.HANDLE = null;
        switch (self.stderr_behavior) {
            StdIo.Pipe => {
                try windowsMakeAsyncPipe(&g_hChildStd_ERR_Rd, &g_hChildStd_ERR_Wr, &saAttr);
            },
            StdIo.Ignore => {
                g_hChildStd_ERR_Wr = nul_handle;
            },
            StdIo.Inherit => {
                g_hChildStd_ERR_Wr = windows.GetStdHandle(windows.STD_ERROR_HANDLE) catch null;
            },
            StdIo.Close => {
                g_hChildStd_ERR_Wr = null;
            },
        }
        errdefer if (self.stdin_behavior == StdIo.Pipe) {
            windowsDestroyPipe(g_hChildStd_ERR_Rd, g_hChildStd_ERR_Wr);
        };

        const cmd_line = try windowsCreateCommandLine(self.allocator, self.argv);
        defer self.allocator.free(cmd_line);

        var siStartInfo = windows.STARTUPINFOW{
            .cb = @sizeOf(windows.STARTUPINFOW),
            .hStdError = g_hChildStd_ERR_Wr,
            .hStdOutput = g_hChildStd_OUT_Wr,
            .hStdInput = g_hChildStd_IN_Rd,
            .dwFlags = windows.STARTF_USESTDHANDLES,

            .lpReserved = null,
            .lpDesktop = null,
            .lpTitle = null,
            .dwX = 0,
            .dwY = 0,
            .dwXSize = 0,
            .dwYSize = 0,
            .dwXCountChars = 0,
            .dwYCountChars = 0,
            .dwFillAttribute = 0,
            .wShowWindow = 0,
            .cbReserved2 = 0,
            .lpReserved2 = null,
        };
        var piProcInfo: windows.PROCESS_INFORMATION = undefined;

        const cwd_w = if (self.cwd) |cwd| try unicode.utf8ToUtf16LeWithNull(self.allocator, cwd) else null;
        defer if (cwd_w) |cwd| self.allocator.free(cwd);
        const cwd_w_ptr = if (cwd_w) |cwd| cwd.ptr else null;

        const maybe_envp_buf = if (self.env_map) |env_map| try createWindowsEnvBlock(self.allocator, env_map) else null;
        defer if (maybe_envp_buf) |envp_buf| self.allocator.free(envp_buf);
        const envp_ptr = if (maybe_envp_buf) |envp_buf| envp_buf.ptr else null;

        const app_name_utf8 = self.argv[0];
        const app_name_is_absolute = fs.path.isAbsolute(app_name_utf8);

        // the cwd set in ChildProcess is in effect when choosing the executable path
        // to match posix semantics
        var cwd_path_w_needs_free = false;
        const cwd_path_w = x: {
            // If the app name is absolute, then we need to use its dirname as the cwd
            if (app_name_is_absolute) {
                cwd_path_w_needs_free = true;
                const dir = fs.path.dirname(app_name_utf8).?;
                break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, dir);
            } else if (self.cwd) |cwd| {
                cwd_path_w_needs_free = true;
                break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, cwd);
            } else {
                break :x &[_:0]u16{}; // empty for cwd
            }
        };
        defer if (cwd_path_w_needs_free) self.allocator.free(cwd_path_w);

        // If the app name has more than just a filename, then we need to separate that
        // into the basename and dirname and use the dirname as an addition to the cwd
        // path. This is because NtQueryDirectoryFile cannot accept FileName params with
        // path separators.
        const app_basename_utf8 = fs.path.basename(app_name_utf8);
        // If the app name is absolute, then the cwd will already have the app's dirname in it,
        // so only populate app_dirname if app name is a relative path with > 0 path separators.
        const maybe_app_dirname_utf8 = if (!app_name_is_absolute) fs.path.dirname(app_name_utf8) else null;
        const app_dirname_w: ?[:0]u16 = x: {
            if (maybe_app_dirname_utf8) |app_dirname_utf8| {
                break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, app_dirname_utf8);
            }
            break :x null;
        };
        defer if (app_dirname_w != null) self.allocator.free(app_dirname_w.?);

        const app_name_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, app_basename_utf8);
        defer self.allocator.free(app_name_w);

        const cmd_line_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, cmd_line);
        defer self.allocator.free(cmd_line_w);

        run: {
            const PATH: [:0]const u16 = std.os.getenvW(unicode.utf8ToUtf16LeStringLiteral("PATH")) orelse &[_:0]u16{};
            const PATHEXT: [:0]const u16 = std.os.getenvW(unicode.utf8ToUtf16LeStringLiteral("PATHEXT")) orelse &[_:0]u16{};

            var app_buf = std.ArrayListUnmanaged(u16){};
            defer app_buf.deinit(self.allocator);

            try app_buf.appendSlice(self.allocator, app_name_w);

            var dir_buf = std.ArrayListUnmanaged(u16){};
            defer dir_buf.deinit(self.allocator);

            if (cwd_path_w.len > 0) {
                try dir_buf.appendSlice(self.allocator, cwd_path_w);
            }
            if (app_dirname_w) |app_dir| {
                if (dir_buf.items.len > 0) try dir_buf.append(self.allocator, fs.path.sep);
                try dir_buf.appendSlice(self.allocator, app_dir);
            }
            if (dir_buf.items.len > 0) {
                // Need to normalize the path, openDirW can't handle things like double backslashes
                const normalized_len = windows.normalizePath(u16, dir_buf.items) catch return error.BadPathName;
                dir_buf.shrinkRetainingCapacity(normalized_len);
            }

            windowsCreateProcessPathExt(self.allocator, &dir_buf, &app_buf, PATHEXT, cmd_line_w.ptr, envp_ptr, cwd_w_ptr, &siStartInfo, &piProcInfo) catch |no_path_err| {
                var original_err = switch (no_path_err) {
                    error.FileNotFound, error.InvalidExe, error.AccessDenied => |e| e,
                    error.UnrecoverableInvalidExe => return error.InvalidExe,
                    else => |e| return e,
                };

                // If the app name had path separators, that disallows PATH searching,
                // and there's no need to search the PATH if the app name is absolute.
                // We still search the path if the cwd is absolute because of the
                // "cwd set in ChildProcess is in effect when choosing the executable path
                // to match posix semantics" behavior--we don't want to skip searching
                // the PATH just because we were trying to set the cwd of the child process.
                if (app_dirname_w != null or app_name_is_absolute) {
                    return original_err;
                }

                var it = mem.tokenizeScalar(u16, PATH, ';');
                while (it.next()) |search_path| {
                    dir_buf.clearRetainingCapacity();
                    try dir_buf.appendSlice(self.allocator, search_path);
                    // Need to normalize the path, some PATH values can contain things like double
                    // backslashes which openDirW can't handle
                    const normalized_len = windows.normalizePath(u16, dir_buf.items) catch continue;
                    dir_buf.shrinkRetainingCapacity(normalized_len);

                    if (windowsCreateProcessPathExt(self.allocator, &dir_buf, &app_buf, PATHEXT, cmd_line_w.ptr, envp_ptr, cwd_w_ptr, &siStartInfo, &piProcInfo)) {
                        break :run;
                    } else |err| switch (err) {
                        error.FileNotFound, error.AccessDenied, error.InvalidExe => continue,
                        error.UnrecoverableInvalidExe => return error.InvalidExe,
                        else => |e| return e,
                    }
                } else {
                    return original_err;
                }
            };
        }

        if (g_hChildStd_IN_Wr) |h| {
            self.stdin = File{ .handle = h };
        } else {
            self.stdin = null;
        }
        if (g_hChildStd_OUT_Rd) |h| {
            self.stdout = File{ .handle = h };
        } else {
            self.stdout = null;
        }
        if (g_hChildStd_ERR_Rd) |h| {
            self.stderr = File{ .handle = h };
        } else {
            self.stderr = null;
        }

        self.id = piProcInfo.hProcess;
        self.thread_handle = piProcInfo.hThread;
        self.term = null;

        if (self.stdin_behavior == StdIo.Pipe) {
            os.close(g_hChildStd_IN_Rd.?);
        }
        if (self.stderr_behavior == StdIo.Pipe) {
            os.close(g_hChildStd_ERR_Wr.?);
        }
        if (self.stdout_behavior == StdIo.Pipe) {
            os.close(g_hChildStd_OUT_Wr.?);
        }
    }

    fn setUpChildIo(stdio: StdIo, pipe_fd: i32, std_fileno: i32, dev_null_fd: i32) !void {
        switch (stdio) {
            .Pipe => try os.dup2(pipe_fd, std_fileno),
            .Close => os.close(std_fileno),
            .Inherit => {},
            .Ignore => try os.dup2(dev_null_fd, std_fileno),
        }
    }
};

fn windowsCreateProcessPathExt(
    allocator: mem.Allocator,
    dir_buf: *std.ArrayListUnmanaged(u16),
    app_buf: *std.ArrayListUnmanaged(u16),
    pathext: [:0]const u16,
    cmd_line: [*:0]u16,
    envp_ptr: ?[*]u16,
    cwd_ptr: ?[*:0]u16,
    lpStartupInfo: *windows.STARTUPINFOW,
    lpProcessInformation: *windows.PROCESS_INFORMATION,
) !void {
    const app_name_len = app_buf.items.len;
    const dir_path_len = dir_buf.items.len;

    if (app_name_len == 0) return error.FileNotFound;

    defer app_buf.shrinkRetainingCapacity(app_name_len);
    defer dir_buf.shrinkRetainingCapacity(dir_path_len);

    // The name of the game here is to avoid CreateProcessW calls at all costs,
    // and only ever try calling it when we have a real candidate for execution.
    // Secondarily, we want to minimize the number of syscalls used when checking
    // for each PATHEXT-appended version of the app name.
    //
    // An overview of the technique used:
    // - Open the search directory for iteration (either cwd or a path from PATH)
    // - Use NtQueryDirectoryFile with a wildcard filename of `*` to
    //   check if anything that could possibly match either the unappended version
    //   of the app name or any of the versions with a PATHEXT value appended exists.
    // - If the wildcard NtQueryDirectoryFile call found nothing, we can exit early
    //   without needing to use PATHEXT at all.
    //
    // This allows us to use a  sequence
    // for any directory that doesn't contain any possible matches, instead of having
    // to use a separate look up for each individual filename combination (unappended +
    // each PATHEXT appended). For directories where the wildcard *does* match something,
    // we iterate the matches and take note of any that are either the unappended version,
    // or a version with a supported PATHEXT appended. We then try calling CreateProcessW
    // with the found versions in the appropriate order.

    var dir = dir: {
        // needs to be null-terminated
        try dir_buf.append(allocator, 0);
        defer dir_buf.shrinkRetainingCapacity(dir_path_len);
        const dir_path_z = dir_buf.items[0 .. dir_buf.items.len - 1 :0];
        const prefixed_path = try windows.wToPrefixedFileW(null, dir_path_z);
        break :dir fs.cwd().openDirW(prefixed_path.span().ptr, .{}, true) catch return error.FileNotFound;
    };
    defer dir.close();

    // Add wildcard and null-terminator
    try app_buf.append(allocator, '*');
    try app_buf.append(allocator, 0);
    const app_name_wildcard = app_buf.items[0 .. app_buf.items.len - 1 :0];

    // This 2048 is arbitrary, we just want it to be large enough to get multiple FILE_DIRECTORY_INFORMATION entries
    // returned per NtQueryDirectoryFile call.
    var file_information_buf: [2048]u8 align(@alignOf(os.windows.FILE_DIRECTORY_INFORMATION)) = undefined;
    const file_info_maximum_single_entry_size = @sizeOf(windows.FILE_DIRECTORY_INFORMATION) + (windows.NAME_MAX * 2);
    if (file_information_buf.len < file_info_maximum_single_entry_size) {
        @compileError("file_information_buf must be large enough to contain at least one maximum size FILE_DIRECTORY_INFORMATION entry");
    }
    var io_status: windows.IO_STATUS_BLOCK = undefined;

    const num_supported_pathext = @typeInfo(CreateProcessSupportedExtension).Enum.fields.len;
    var pathext_seen = [_]bool{false} ** num_supported_pathext;
    var any_pathext_seen = false;
    var unappended_exists = false;

    // Fully iterate the wildcard matches via NtQueryDirectoryFile and take note of all versions
    // of the app_name we should try to spawn.
    // Note: This is necessary because the order of the files returned is filesystem-dependent:
    //       On NTFS, `blah.exe*` will always return `blah.exe` first if it exists.
    //       On FAT32, it's possible for something like `blah.exe.obj` to be returned first.
    while (true) {
        const app_name_len_bytes = math.cast(u16, app_name_wildcard.len * 2) orelse return error.NameTooLong;
        var app_name_unicode_string = windows.UNICODE_STRING{
            .Length = app_name_len_bytes,
            .MaximumLength = app_name_len_bytes,
            .Buffer = @constCast(app_name_wildcard.ptr),
        };
        const rc = windows.ntdll.NtQueryDirectoryFile(
            dir.fd,
            null,
            null,
            null,
            &io_status,
            &file_information_buf,
            file_information_buf.len,
            .FileDirectoryInformation,
            windows.FALSE, // single result
            &app_name_unicode_string,
            windows.FALSE, // restart iteration
        );

        // If we get nothing with the wildcard, then we can just bail out
        // as we know appending PATHEXT will not yield anything.
        switch (rc) {
            .SUCCESS => {},
            .NO_SUCH_FILE => return error.FileNotFound,
            .NO_MORE_FILES => break,
            .ACCESS_DENIED => return error.AccessDenied,
            else => return windows.unexpectedStatus(rc),
        }

        // According to the docs, this can only happen if there is not enough room in the
        // buffer to write at least one complete FILE_DIRECTORY_INFORMATION entry.
        // Therefore, this condition should not be possible to hit with the buffer size we use.
        std.debug.assert(io_status.Information != 0);

        var it = windows.FileInformationIterator(windows.FILE_DIRECTORY_INFORMATION){ .buf = &file_information_buf };
        while (it.next()) |info| {
            // Skip directories
            if (info.FileAttributes & windows.FILE_ATTRIBUTE_DIRECTORY != 0) continue;
            const filename = @as([*]u16, @ptrCast(&info.FileName))[0 .. info.FileNameLength / 2];
            // Because all results start with the app_name since we're using the wildcard `app_name*`,
            // if the length is equal to app_name then this is an exact match
            if (filename.len == app_name_len) {
                // Note: We can't break early here because it's possible that the unappended version
                //       fails to spawn, in which case we still want to try the PATHEXT appended versions.
                unappended_exists = true;
            } else if (windowsCreateProcessSupportsExtension(filename[app_name_len..])) |pathext_ext| {
                pathext_seen[@intFromEnum(pathext_ext)] = true;
                any_pathext_seen = true;
            }
        }
    }

    const unappended_err = unappended: {
        if (unappended_exists) {
            if (dir_path_len != 0) switch (dir_buf.items[dir_buf.items.len - 1]) {
                '/', '\\' => {},
                else => try dir_buf.append(allocator, fs.path.sep),
            };
            try dir_buf.appendSlice(allocator, app_buf.items[0..app_name_len]);
            try dir_buf.append(allocator, 0);
            const full_app_name = dir_buf.items[0 .. dir_buf.items.len - 1 :0];

            if (windowsCreateProcess(full_app_name.ptr, cmd_line, envp_ptr, cwd_ptr, lpStartupInfo, lpProcessInformation)) |_| {
                return;
            } else |err| switch (err) {
                error.FileNotFound,
                error.AccessDenied,
                => break :unappended err,
                error.InvalidExe => {
                    // On InvalidExe, if the extension of the app name is .exe then
                    // it's treated as an unrecoverable error. Otherwise, it'll be
                    // skipped as normal.
                    const app_name = app_buf.items[0..app_name_len];
                    const ext_start = std.mem.lastIndexOfScalar(u16, app_name, '.') orelse break :unappended err;
                    const ext = app_name[ext_start..];
                    if (windows.eqlIgnoreCaseWTF16(ext, unicode.utf8ToUtf16LeStringLiteral(".EXE"))) {
                        return error.UnrecoverableInvalidExe;
                    }
                    break :unappended err;
                },
                else => return err,
            }
        }
        break :unappended error.FileNotFound;
    };

    if (!any_pathext_seen) return unappended_err;

    // Now try any PATHEXT appended versions that we've seen
    var ext_it = mem.tokenizeScalar(u16, pathext, ';');
    while (ext_it.next()) |ext| {
        const ext_enum = windowsCreateProcessSupportsExtension(ext) orelse continue;
        if (!pathext_seen[@intFromEnum(ext_enum)]) continue;

        dir_buf.shrinkRetainingCapacity(dir_path_len);
        if (dir_path_len != 0) switch (dir_buf.items[dir_buf.items.len - 1]) {
            '/', '\\' => {},
            else => try dir_buf.append(allocator, fs.path.sep),
        };
        try dir_buf.appendSlice(allocator, app_buf.items[0..app_name_len]);
        try dir_buf.appendSlice(allocator, ext);
        try dir_buf.append(allocator, 0);
        const full_app_name = dir_buf.items[0 .. dir_buf.items.len - 1 :0];

        if (windowsCreateProcess(full_app_name.ptr, cmd_line, envp_ptr, cwd_ptr, lpStartupInfo, lpProcessInformation)) |_| {
            return;
        } else |err| switch (err) {
            error.FileNotFound => continue,
            error.AccessDenied => continue,
            error.InvalidExe => {
                // On InvalidExe, if the extension of the app name is .exe then
                // it's treated as an unrecoverable error. Otherwise, it'll be
                // skipped as normal.
                if (windows.eqlIgnoreCaseWTF16(ext, unicode.utf8ToUtf16LeStringLiteral(".EXE"))) {
                    return error.UnrecoverableInvalidExe;
                }
                continue;
            },
            else => return err,
        }
    }

    return unappended_err;
}

fn windowsCreateProcess(app_name: [*:0]u16, cmd_line: [*:0]u16, envp_ptr: ?[*]u16, cwd_ptr: ?[*:0]u16, lpStartupInfo: *windows.STARTUPINFOW, lpProcessInformation: *windows.PROCESS_INFORMATION) !void {
    // TODO the docs for environment pointer say:
    // > A pointer to the environment block for the new process. If this parameter
    // > is NULL, the new process uses the environment of the calling process.
    // > ...
    // > An environment block can contain either Unicode or ANSI characters. If
    // > the environment block pointed to by lpEnvironment contains Unicode
    // > characters, be sure that dwCreationFlags includes CREATE_UNICODE_ENVIRONMENT.
    // > If this parameter is NULL and the environment block of the parent process
    // > contains Unicode characters, you must also ensure that dwCreationFlags
    // > includes CREATE_UNICODE_ENVIRONMENT.
    // This seems to imply that we have to somehow know whether our process parent passed
    // CREATE_UNICODE_ENVIRONMENT if we want to pass NULL for the environment parameter.
    // Since we do not know this information that would imply that we must not pass NULL
    // for the parameter.
    // However this would imply that programs compiled with -DUNICODE could not pass
    // environment variables to programs that were not, which seems unlikely.
    // More investigation is needed.
    return windows.CreateProcessW(
        app_name,
        cmd_line,
        null,
        null,
        windows.TRUE,
        windows.CREATE_UNICODE_ENVIRONMENT,
        @as(?*anyopaque, @ptrCast(envp_ptr)),
        cwd_ptr,
        lpStartupInfo,
        lpProcessInformation,
    );
}

// Should be kept in sync with `windowsCreateProcessSupportsExtension`
const CreateProcessSupportedExtension = enum {
    bat,
    cmd,
    com,
    exe,
};

fn windowsCreateProcessSupportsExtension(ext: []const u16) ?CreateProcessSupportedExtension {
    if (ext.len != 4) return null;
    const State = enum {
        start,
        dot,
        b,
        ba,
        c,
        cm,
        co,
        e,
        ex,
    };
    var state: State = .start;
    for (ext) |c| switch (state) {
        .start => switch (c) {
            '.' => state = .dot,
            else => return null,
        },
        .dot => switch (c) {
            'b', 'B' => state = .b,
            'c', 'C' => state = .c,
            'e', 'E' => state = .e,
            else => return null,
        },
        .b => switch (c) {
            'a', 'A' => state = .ba,
            else => return null,
        },
        .c => switch (c) {
            'm', 'M' => state = .cm,
            'o', 'O' => state = .co,
            else => return null,
        },
        .e => switch (c) {
            'x', 'X' => state = .ex,
            else => return null,
        },
        .ba => switch (c) {
            't', 'T' => return .bat,
            else => return null,
        },
        .cm => switch (c) {
            'd', 'D' => return .cmd,
            else => return null,
        },
        .co => switch (c) {
            'm', 'M' => return .com,
            else => return null,
        },
        .ex => switch (c) {
            'e', 'E' => return .exe,
            else => return null,
        },
    };
    return null;
}

Test:

windowsCreateProcessSupportsExtension

Expects app_buf to contain exactly the app name, and dir_buf to contain exactly the dir path. After return, app_buf will always contain exactly the app name and dir_buf will always contain exactly the dir path. Note: app_buf should not contain any leading path separators. Note: If the dir is the cwd, dir_buf should be empty (len = 0). Case-insensitive UTF-16 lookup

test "windowsCreateProcessSupportsExtension" {
    try std.testing.expectEqual(CreateProcessSupportedExtension.exe, windowsCreateProcessSupportsExtension(&[_]u16{ '.', 'e', 'X', 'e' }).?);
    try std.testing.expect(windowsCreateProcessSupportsExtension(&[_]u16{ '.', 'e', 'X', 'e', 'c' }) == null);
}

fn windowsCreateCommandLine(allocator: mem.Allocator, argv: []const []const u8) ![:0]u8 {
    var buf = std.ArrayList(u8).init(allocator);
    defer buf.deinit();

    for (argv, 0..) |arg, arg_i| {
        if (arg_i != 0) try buf.append(' ');
        if (mem.indexOfAny(u8, arg, " \t\n\"") == null) {
            try buf.appendSlice(arg);
            continue;
        }
        try buf.append('"');
        var backslash_count: usize = 0;
        for (arg) |byte| {
            switch (byte) {
                '\\' => backslash_count += 1,
                '"' => {
                    try buf.appendNTimes('\\', backslash_count * 2 + 1);
                    try buf.append('"');
                    backslash_count = 0;
                },
                else => {
                    try buf.appendNTimes('\\', backslash_count);
                    try buf.append(byte);
                    backslash_count = 0;
                },
            }
        }
        try buf.appendNTimes('\\', backslash_count * 2);
        try buf.append('"');
    }

    return buf.toOwnedSliceSentinel(0);
}

fn windowsDestroyPipe(rd: ?windows.HANDLE, wr: ?windows.HANDLE) void {
    if (rd) |h| os.close(h);
    if (wr) |h| os.close(h);
}

fn windowsMakePipeIn(rd: *?windows.HANDLE, wr: *?windows.HANDLE, sattr: *const windows.SECURITY_ATTRIBUTES) !void {
    var rd_h: windows.HANDLE = undefined;
    var wr_h: windows.HANDLE = undefined;
    try windows.CreatePipe(&rd_h, &wr_h, sattr);
    errdefer windowsDestroyPipe(rd_h, wr_h);
    try windows.SetHandleInformation(wr_h, windows.HANDLE_FLAG_INHERIT, 0);
    rd.* = rd_h;
    wr.* = wr_h;
}

var pipe_name_counter = std.atomic.Atomic(u32).init(1);

fn windowsMakeAsyncPipe(rd: *?windows.HANDLE, wr: *?windows.HANDLE, sattr: *const windows.SECURITY_ATTRIBUTES) !void {
    var tmp_bufw: [128]u16 = undefined;

    // Anonymous pipes are built upon Named pipes.
    // https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-createpipe
    // Asynchronous (overlapped) read and write operations are not supported by anonymous pipes.
    // https://docs.microsoft.com/en-us/windows/win32/ipc/anonymous-pipe-operations
    const pipe_path = blk: {
        var tmp_buf: [128]u8 = undefined;
        // Forge a random path for the pipe.
        const pipe_path = std.fmt.bufPrintZ(
            &tmp_buf,
            "\\\\.\\pipe\\zig-childprocess-{d}-{d}",
            .{ windows.kernel32.GetCurrentProcessId(), pipe_name_counter.fetchAdd(1, .Monotonic) },
        ) catch unreachable;
        const len = std.unicode.utf8ToUtf16Le(&tmp_bufw, pipe_path) catch unreachable;
        tmp_bufw[len] = 0;
        break :blk tmp_bufw[0..len :0];
    };

    // Create the read handle that can be used with overlapped IO ops.
    const read_handle = windows.kernel32.CreateNamedPipeW(
        pipe_path.ptr,
        windows.PIPE_ACCESS_INBOUND | windows.FILE_FLAG_OVERLAPPED,
        windows.PIPE_TYPE_BYTE,
        1,
        4096,
        4096,
        0,
        sattr,
    );
    if (read_handle == windows.INVALID_HANDLE_VALUE) {
        switch (windows.kernel32.GetLastError()) {
            else => |err| return windows.unexpectedError(err),
        }
    }
    errdefer os.close(read_handle);

    var sattr_copy = sattr.*;
    const write_handle = windows.kernel32.CreateFileW(
        pipe_path.ptr,
        windows.GENERIC_WRITE,
        0,
        &sattr_copy,
        windows.OPEN_EXISTING,
        windows.FILE_ATTRIBUTE_NORMAL,
        null,
    );
    if (write_handle == windows.INVALID_HANDLE_VALUE) {
        switch (windows.kernel32.GetLastError()) {
            else => |err| return windows.unexpectedError(err),
        }
    }
    errdefer os.close(write_handle);

    try windows.SetHandleInformation(read_handle, windows.HANDLE_FLAG_INHERIT, 0);

    rd.* = read_handle;
    wr.* = write_handle;
}

fn destroyPipe(pipe: [2]os.fd_t) void {
    os.close(pipe[0]);
    if (pipe[0] != pipe[1]) os.close(pipe[1]);
}

// Child of fork calls this to report an error to the fork parent.
// Then the child exits.
fn forkChildErrReport(fd: i32, err: ChildProcess.SpawnError) noreturn {
    writeIntFd(fd, @as(ErrInt, @intFromError(err))) catch {};
    // If we're linking libc, some naughty applications may have registered atexit handlers
    // which we really do not want to run in the fork child. I caught LLVM doing this and
    // it caused a deadlock instead of doing an exit syscall. In the words of Avril Lavigne,
    // "Why'd you have to go and make things so complicated?"
    if (builtin.link_libc) {
        // The _exit(2) function does nothing but make the exit syscall, unlike exit(3)
        std.c._exit(1);
    }
    os.exit(1);
}

const ErrInt = std.meta.Int(.unsigned, @sizeOf(anyerror) * 8);

fn writeIntFd(fd: i32, value: ErrInt) !void {
    const file = File{
        .handle = fd,
        .capable_io_mode = .blocking,
        .intended_io_mode = .blocking,
    };
    file.writer().writeInt(u64, @intCast(value), .little) catch return error.SystemResources;
}

fn readIntFd(fd: i32) !ErrInt {
    const file = File{
        .handle = fd,
        .capable_io_mode = .blocking,
        .intended_io_mode = .blocking,
    };
    return @as(ErrInt, @intCast(file.reader().readInt(u64, .little) catch return error.SystemResources));
}

createWindowsEnvBlock()

Caller must dealloc. Caller must free result.

pub fn createWindowsEnvBlock(allocator: mem.Allocator, env_map: *const EnvMap) ![]u16 {
    // count bytes needed
    const max_chars_needed = x: {
        var max_chars_needed: usize = 4; // 4 for the final 4 null bytes
        var it = env_map.iterator();
        while (it.next()) |pair| {
            // +1 for '='
            // +1 for null byte
            max_chars_needed += pair.key_ptr.len + pair.value_ptr.len + 2;
        }
        break :x max_chars_needed;
    };
    const result = try allocator.alloc(u16, max_chars_needed);
    errdefer allocator.free(result);

    var it = env_map.iterator();
    var i: usize = 0;
    while (it.next()) |pair| {
        i += try unicode.utf8ToUtf16Le(result[i..], pair.key_ptr.*);
        result[i] = '=';
        i += 1;
        i += try unicode.utf8ToUtf16Le(result[i..], pair.value_ptr.*);
        result[i] = 0;
        i += 1;
    }
    result[i] = 0;
    i += 1;
    result[i] = 0;
    i += 1;
    result[i] = 0;
    i += 1;
    result[i] = 0;
    i += 1;
    return try allocator.realloc(result, i);
}

createNullDelimitedEnvMap()

pub fn createNullDelimitedEnvMap(arena: mem.Allocator, env_map: *const EnvMap) ![:null]?[*:0]u8 {
    const envp_count = env_map.count();
    const envp_buf = try arena.allocSentinel(?[*:0]u8, envp_count, null);
    {
        var it = env_map.iterator();
        var i: usize = 0;
        while (it.next()) |pair| : (i += 1) {
            const env_buf = try arena.allocSentinel(u8, pair.key_ptr.len + pair.value_ptr.len + 1, 0);
            @memcpy(env_buf[0..pair.key_ptr.len], pair.key_ptr.*);
            env_buf[pair.key_ptr.len] = '=';
            @memcpy(env_buf[pair.key_ptr.len + 1 ..][0..pair.value_ptr.len], pair.value_ptr.*);
            envp_buf[i] = env_buf.ptr;
        }
        assert(i == envp_count);
    }
    return envp_buf;
}

Test:

createNullDelimitedEnvMap

test "createNullDelimitedEnvMap" {
    const testing = std.testing;
    const allocator = testing.allocator;
    var envmap = EnvMap.init(allocator);
    defer envmap.deinit();

    try envmap.put("HOME", "/home/ifreund");
    try envmap.put("WAYLAND_DISPLAY", "wayland-1");
    try envmap.put("DISPLAY", ":1");
    try envmap.put("DEBUGINFOD_URLS", " ");
    try envmap.put("XCURSOR_SIZE", "24");

    var arena = std.heap.ArenaAllocator.init(allocator);
    defer arena.deinit();
    const environ = try createNullDelimitedEnvMap(arena.allocator(), &envmap);

    try testing.expectEqual(@as(usize, 5), environ.len);

    inline for (.{
        "HOME=/home/ifreund",
        "WAYLAND_DISPLAY=wayland-1",
        "DISPLAY=:1",
        "DEBUGINFOD_URLS= ",
        "XCURSOR_SIZE=24",
    }) |target| {
        for (environ) |variable| {
            if (mem.eql(u8, mem.span(variable orelse continue), target)) break;
        } else {
            try testing.expect(false); // Environment variable not found
        }
    }
}