zig/lib/std / crypto.zig

const root = @import("root");

aead

Authenticated Encryption with Associated Data

pub const aead = struct {
    pub const aegis = struct {
        pub const Aegis128L = @import("crypto/aegis.zig").Aegis128L;
        pub const Aegis128L_256 = @import("crypto/aegis.zig").Aegis128L_256;
        pub const Aegis256 = @import("crypto/aegis.zig").Aegis256;
        pub const Aegis256_256 = @import("crypto/aegis.zig").Aegis256_256;
    };

    pub const aes_gcm = struct {
        pub const Aes128Gcm = @import("crypto/aes_gcm.zig").Aes128Gcm;
        pub const Aes256Gcm = @import("crypto/aes_gcm.zig").Aes256Gcm;
    };

    pub const aes_ocb = struct {
        pub const Aes128Ocb = @import("crypto/aes_ocb.zig").Aes128Ocb;
        pub const Aes256Ocb = @import("crypto/aes_ocb.zig").Aes256Ocb;
    };

    pub const chacha_poly = struct {
        pub const ChaCha20Poly1305 = @import("crypto/chacha20.zig").ChaCha20Poly1305;
        pub const ChaCha12Poly1305 = @import("crypto/chacha20.zig").ChaCha12Poly1305;
        pub const ChaCha8Poly1305 = @import("crypto/chacha20.zig").ChaCha8Poly1305;
        pub const XChaCha20Poly1305 = @import("crypto/chacha20.zig").XChaCha20Poly1305;
        pub const XChaCha12Poly1305 = @import("crypto/chacha20.zig").XChaCha12Poly1305;
        pub const XChaCha8Poly1305 = @import("crypto/chacha20.zig").XChaCha8Poly1305;
    };

    pub const isap = @import("crypto/isap.zig");

    pub const salsa_poly = struct {
        pub const XSalsa20Poly1305 = @import("crypto/salsa20.zig").XSalsa20Poly1305;
    };
};

auth

Authentication (MAC) functions.

pub const auth = struct {
    pub const hmac = @import("crypto/hmac.zig");
    pub const siphash = @import("crypto/siphash.zig");
    pub const aegis = struct {
        pub const Aegis128LMac = @import("crypto/aegis.zig").Aegis128LMac;
        pub const Aegis128LMac_128 = @import("crypto/aegis.zig").Aegis128LMac_128;
        pub const Aegis256Mac = @import("crypto/aegis.zig").Aegis256Mac;
        pub const Aegis256Mac_128 = @import("crypto/aegis.zig").Aegis256Mac_128;
    };
    pub const cmac = @import("crypto/cmac.zig");
};

core

Core functions, that should rarely be used directly by applications.

pub const core = struct {
    pub const aes = @import("crypto/aes.zig");
    pub const keccak = @import("crypto/keccak_p.zig");

    pub const Ascon = @import("crypto/ascon.zig").State;

    pub const modes = @import("crypto/modes.zig");
};

dh

Modes are generic compositions to construct encryption/decryption functions from block ciphers and permutations.

These modes are designed to be building blocks for higher-level constructions, and should generally not be used directly by applications, as they may not provide the expected properties and security guarantees.

Most applications may want to use AEADs instead. Diffie-Hellman key exchange functions.

pub const dh = struct {
    pub const X25519 = @import("crypto/25519/x25519.zig").X25519;
};

kem

Key Encapsulation Mechanisms.

pub const kem = struct {
    pub const kyber_d00 = @import("crypto/kyber_d00.zig");
};

ecc

Elliptic-curve arithmetic.

pub const ecc = struct {
    pub const Curve25519 = @import("crypto/25519/curve25519.zig").Curve25519;
    pub const Edwards25519 = @import("crypto/25519/edwards25519.zig").Edwards25519;
    pub const P256 = @import("crypto/pcurves/p256.zig").P256;
    pub const P384 = @import("crypto/pcurves/p384.zig").P384;
    pub const Ristretto255 = @import("crypto/25519/ristretto255.zig").Ristretto255;
    pub const Secp256k1 = @import("crypto/pcurves/secp256k1.zig").Secp256k1;
};

hash

Hash functions.

pub const hash = struct {
    pub const blake2 = @import("crypto/blake2.zig");
    pub const Blake3 = @import("crypto/blake3.zig").Blake3;
    pub const Md5 = @import("crypto/md5.zig").Md5;
    pub const Sha1 = @import("crypto/sha1.zig").Sha1;
    pub const sha2 = @import("crypto/sha2.zig");
    pub const sha3 = @import("crypto/sha3.zig");
    pub const composition = @import("crypto/hash_composition.zig");
};

kdf

Key derivation functions.

pub const kdf = struct {
    pub const hkdf = @import("crypto/hkdf.zig");
};

onetimeauth

MAC functions requiring single-use secret keys.

pub const onetimeauth = struct {
    pub const Ghash = @import("crypto/ghash_polyval.zig").Ghash;
    pub const Polyval = @import("crypto/ghash_polyval.zig").Polyval;
    pub const Poly1305 = @import("crypto/poly1305.zig").Poly1305;
};

pwhash

A password hashing function derives a uniform key from low-entropy input material such as passwords. It is intentionally slow or expensive.

With the standard definition of a key derivation function, if a key space is small, an exhaustive search may be practical. Password hashing functions make exhaustive searches way slower or way more expensive, even when implemented on GPUs and ASICs, by using different, optionally combined strategies:

- Requiring a lot of computation cycles to complete - Requiring a lot of memory to complete - Requiring multiple CPU cores to complete - Requiring cache-local data to complete in reasonable time - Requiring large static tables - Avoiding precomputations and time/memory tradeoffs - Requiring multi-party computations - Combining the input material with random per-entry data (salts), application-specific contexts and keys

Password hashing functions must be used whenever sensitive data has to be directly derived from a password.

pub const pwhash = struct {
    pub const Encoding = enum {
        phc,
        crypt,
    };

    pub const Error = HasherError || error{AllocatorRequired};
    pub const HasherError = KdfError || phc_format.Error;
    pub const KdfError = errors.Error || std.mem.Allocator.Error || std.Thread.SpawnError;

    pub const argon2 = @import("crypto/argon2.zig");
    pub const bcrypt = @import("crypto/bcrypt.zig");
    pub const scrypt = @import("crypto/scrypt.zig");
    pub const pbkdf2 = @import("crypto/pbkdf2.zig").pbkdf2;

    pub const phc_format = @import("crypto/phc_encoding.zig");
};

sign

Digital signature functions.

pub const sign = struct {
    pub const Ed25519 = @import("crypto/25519/ed25519.zig").Ed25519;
    pub const ecdsa = @import("crypto/ecdsa.zig");
};

stream

Stream ciphers. These do not provide any kind of authentication. Most applications should be using AEAD constructions instead of stream ciphers directly.

pub const stream = struct {
    pub const chacha = struct {
        pub const ChaCha20IETF = @import("crypto/chacha20.zig").ChaCha20IETF;
        pub const ChaCha12IETF = @import("crypto/chacha20.zig").ChaCha12IETF;
        pub const ChaCha8IETF = @import("crypto/chacha20.zig").ChaCha8IETF;
        pub const ChaCha20With64BitNonce = @import("crypto/chacha20.zig").ChaCha20With64BitNonce;
        pub const ChaCha12With64BitNonce = @import("crypto/chacha20.zig").ChaCha12With64BitNonce;
        pub const ChaCha8With64BitNonce = @import("crypto/chacha20.zig").ChaCha8With64BitNonce;
        pub const XChaCha20IETF = @import("crypto/chacha20.zig").XChaCha20IETF;
        pub const XChaCha12IETF = @import("crypto/chacha20.zig").XChaCha12IETF;
        pub const XChaCha8IETF = @import("crypto/chacha20.zig").XChaCha8IETF;
    };

    pub const salsa = struct {
        pub const Salsa = @import("crypto/salsa20.zig").Salsa;
        pub const XSalsa = @import("crypto/salsa20.zig").XSalsa;
        pub const Salsa20 = @import("crypto/salsa20.zig").Salsa20;
        pub const XSalsa20 = @import("crypto/salsa20.zig").XSalsa20;
    };
};

nacl

pub const nacl = struct {
    const salsa20 = @import("crypto/salsa20.zig");

    pub const Box = salsa20.Box;
    pub const SecretBox = salsa20.SecretBox;
    pub const SealedBox = salsa20.SealedBox;
};

utils

crypto/utils.zig
pub const utils = @import("crypto/utils.zig");

ff

crypto/ff.zig

Finite-field arithmetic.

pub const ff = @import("crypto/ff.zig");

random

crypto/tlcsprng.zig

This is a thread-local, cryptographically secure pseudo random number generator.

pub const random = @import("crypto/tlcsprng.zig").interface;

const std = @import("std.zig");

errors

crypto/errors.zig
pub const errors = @import("crypto/errors.zig");

tls

crypto/tls.zig
pub const tls = @import("crypto/tls.zig");

Certificate

crypto/Certificate.zig
pub const Certificate = @import("crypto/Certificate.zig");

SideChannelsMitigations

Side-channels mitigations.

pub const SideChannelsMitigations = enum {
    none,
    basic,
    medium,
    full,
};

default_side_channels_mitigations

No additional side-channel mitigations are applied. This is the fastest mode. The basic mode protects against most practical attacks, provided that the application or implements proper defenses against brute-force attacks. It offers a good balance between performance and security. The medium mode offers increased resilience against side-channel attacks, making most attacks unpractical even on shared/low latency environements. This is the default mode. The full mode offers the highest level of protection against side-channel attacks. Note that this doesn't cover all possible attacks (especially power analysis or thread-local attacks such as cachebleed), and that the performance impact is significant.

pub const default_side_channels_mitigations = .medium;

test {
    _ = aead.aegis.Aegis128L;
    _ = aead.aegis.Aegis256;

    _ = aead.aes_gcm.Aes128Gcm;
    _ = aead.aes_gcm.Aes256Gcm;

    _ = aead.aes_ocb.Aes128Ocb;
    _ = aead.aes_ocb.Aes256Ocb;

    _ = aead.chacha_poly.ChaCha20Poly1305;
    _ = aead.chacha_poly.ChaCha12Poly1305;
    _ = aead.chacha_poly.ChaCha8Poly1305;
    _ = aead.chacha_poly.XChaCha20Poly1305;
    _ = aead.chacha_poly.XChaCha12Poly1305;
    _ = aead.chacha_poly.XChaCha8Poly1305;

    _ = aead.isap;
    _ = aead.salsa_poly.XSalsa20Poly1305;

    _ = auth.hmac;
    _ = auth.cmac;
    _ = auth.siphash;

    _ = core.aes;
    _ = core.Ascon;
    _ = core.modes;

    _ = dh.X25519;

    _ = kem.kyber_d00;

    _ = ecc.Curve25519;
    _ = ecc.Edwards25519;
    _ = ecc.P256;
    _ = ecc.P384;
    _ = ecc.Ristretto255;
    _ = ecc.Secp256k1;

    _ = hash.blake2;
    _ = hash.Blake3;
    _ = hash.Md5;
    _ = hash.Sha1;
    _ = hash.sha2;
    _ = hash.sha3;
    _ = hash.composition;

    _ = kdf.hkdf;

    _ = onetimeauth.Ghash;
    _ = onetimeauth.Poly1305;

    _ = pwhash.Encoding;

    _ = pwhash.Error;
    _ = pwhash.HasherError;
    _ = pwhash.KdfError;

    _ = pwhash.argon2;
    _ = pwhash.bcrypt;
    _ = pwhash.scrypt;
    _ = pwhash.pbkdf2;

    _ = pwhash.phc_format;

    _ = sign.Ed25519;
    _ = sign.ecdsa;

    _ = stream.chacha.ChaCha20IETF;
    _ = stream.chacha.ChaCha12IETF;
    _ = stream.chacha.ChaCha8IETF;
    _ = stream.chacha.ChaCha20With64BitNonce;
    _ = stream.chacha.ChaCha12With64BitNonce;
    _ = stream.chacha.ChaCha8With64BitNonce;
    _ = stream.chacha.XChaCha20IETF;
    _ = stream.chacha.XChaCha12IETF;
    _ = stream.chacha.XChaCha8IETF;

    _ = stream.salsa.Salsa20;
    _ = stream.salsa.XSalsa20;

    _ = nacl.Box;
    _ = nacl.SecretBox;
    _ = nacl.SealedBox;

    _ = utils;
    _ = ff;
    _ = random;
    _ = errors;
    _ = tls;
    _ = Certificate;
}

Test:

CSPRNG

test "CSPRNG" {
    const a = random.int(u64);
    const b = random.int(u64);
    const c = random.int(u64);
    try std.testing.expect(a ^ b ^ c != 0);
}

Test:

issue #4532: no index out of bounds

test "issue #4532: no index out of bounds" {
    const types = [_]type{
        hash.Md5,
        hash.Sha1,
        hash.sha2.Sha224,
        hash.sha2.Sha256,
        hash.sha2.Sha384,
        hash.sha2.Sha512,
        hash.sha3.Sha3_224,
        hash.sha3.Sha3_256,
        hash.sha3.Sha3_384,
        hash.sha3.Sha3_512,
        hash.blake2.Blake2s128,
        hash.blake2.Blake2s224,
        hash.blake2.Blake2s256,
        hash.blake2.Blake2b128,
        hash.blake2.Blake2b256,
        hash.blake2.Blake2b384,
        hash.blake2.Blake2b512,
    };

    inline for (types) |Hasher| {
        var block = [_]u8{'#'} ** Hasher.block_length;
        var out1: [Hasher.digest_length]u8 = undefined;
        var out2: [Hasher.digest_length]u8 = undefined;
        const h0 = Hasher.init(.{});
        var h = h0;
        h.update(block[0..]);
        h.final(&out1);
        h = h0;
        h.update(block[0..1]);
        h.update(block[1..]);
        h.final(&out2);

        try std.testing.expectEqual(out1, out2);
    }
}