zig/lib/std / crypto/scrypt.zig

// https://tools.ietf.org/html/rfc7914
// https://github.com/golang/crypto/blob/master/scrypt/scrypt.go
// https://github.com/Tarsnap/scrypt

const std = @import("std");
const crypto = std.crypto;
const fmt = std.fmt;
const io = std.io;
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const pwhash = crypto.pwhash;

const phc_format = @import("phc_encoding.zig");

const HmacSha256 = crypto.auth.hmac.sha2.HmacSha256;
const KdfError = pwhash.KdfError;
const HasherError = pwhash.HasherError;
const EncodingError = phc_format.Error;
const Error = pwhash.Error;

const max_size = math.maxInt(usize);
const max_int = max_size >> 1;
const default_salt_len = 32;
const default_hash_len = 32;
const max_salt_len = 64;
const max_hash_len = 64;

fn blockCopy(dst: []align(16) u32, src: []align(16) const u32, n: usize) void {
    @memcpy(dst[0 .. n * 16], src[0 .. n * 16]);
}

fn blockXor(dst: []align(16) u32, src: []align(16) const u32, n: usize) void {
    for (src[0 .. n * 16], 0..) |v, i| {
        dst[i] ^= v;
    }
}

const QuarterRound = struct { a: usize, b: usize, c: usize, d: u6 };

fn Rp(a: usize, b: usize, c: usize, d: u6) QuarterRound {
    return QuarterRound{ .a = a, .b = b, .c = c, .d = d };
}

fn salsa8core(b: *align(16) [16]u32) void {
    const arx_steps = comptime [_]QuarterRound{
        Rp(4, 0, 12, 7),   Rp(8, 4, 0, 9),    Rp(12, 8, 4, 13),   Rp(0, 12, 8, 18),
        Rp(9, 5, 1, 7),    Rp(13, 9, 5, 9),   Rp(1, 13, 9, 13),   Rp(5, 1, 13, 18),
        Rp(14, 10, 6, 7),  Rp(2, 14, 10, 9),  Rp(6, 2, 14, 13),   Rp(10, 6, 2, 18),
        Rp(3, 15, 11, 7),  Rp(7, 3, 15, 9),   Rp(11, 7, 3, 13),   Rp(15, 11, 7, 18),
        Rp(1, 0, 3, 7),    Rp(2, 1, 0, 9),    Rp(3, 2, 1, 13),    Rp(0, 3, 2, 18),
        Rp(6, 5, 4, 7),    Rp(7, 6, 5, 9),    Rp(4, 7, 6, 13),    Rp(5, 4, 7, 18),
        Rp(11, 10, 9, 7),  Rp(8, 11, 10, 9),  Rp(9, 8, 11, 13),   Rp(10, 9, 8, 18),
        Rp(12, 15, 14, 7), Rp(13, 12, 15, 9), Rp(14, 13, 12, 13), Rp(15, 14, 13, 18),
    };
    var x = b.*;
    var j: usize = 0;
    while (j < 8) : (j += 2) {
        inline for (arx_steps) |r| {
            x[r.a] ^= math.rotl(u32, x[r.b] +% x[r.c], r.d);
        }
    }
    j = 0;
    while (j < 16) : (j += 1) {
        b[j] +%= x[j];
    }
}

fn salsaXor(tmp: *align(16) [16]u32, in: []align(16) const u32, out: []align(16) u32) void {
    blockXor(tmp, in, 1);
    salsa8core(tmp);
    blockCopy(out, tmp, 1);
}

fn blockMix(tmp: *align(16) [16]u32, in: []align(16) const u32, out: []align(16) u32, r: u30) void {
    blockCopy(tmp, @alignCast(in[(2 * r - 1) * 16 ..]), 1);
    var i: usize = 0;
    while (i < 2 * r) : (i += 2) {
        salsaXor(tmp, @alignCast(in[i * 16 ..]), @alignCast(out[i * 8 ..]));
        salsaXor(tmp, @alignCast(in[i * 16 + 16 ..]), @alignCast(out[i * 8 + r * 16 ..]));
    }
}

fn integerify(b: []align(16) const u32, r: u30) u64 {
    const j = (2 * r - 1) * 16;
    return @as(u64, b[j]) | @as(u64, b[j + 1]) << 32;
}

fn smix(b: []align(16) u8, r: u30, n: usize, v: []align(16) u32, xy: []align(16) u32) void {
    var x: []align(16) u32 = @alignCast(xy[0 .. 32 * r]);
    var y: []align(16) u32 = @alignCast(xy[32 * r ..]);

    for (x, 0..) |*v1, j| {
        v1.* = mem.readInt(u32, b[4 * j ..][0..4], .little);
    }

    var tmp: [16]u32 align(16) = undefined;
    var i: usize = 0;
    while (i < n) : (i += 2) {
        blockCopy(@alignCast(v[i * (32 * r) ..]), x, 2 * r);
        blockMix(&tmp, x, y, r);

        blockCopy(@alignCast(v[(i + 1) * (32 * r) ..]), y, 2 * r);
        blockMix(&tmp, y, x, r);
    }

    i = 0;
    while (i < n) : (i += 2) {
        var j = @as(usize, @intCast(integerify(x, r) & (n - 1)));
        blockXor(x, @alignCast(v[j * (32 * r) ..]), 2 * r);
        blockMix(&tmp, x, y, r);

        j = @as(usize, @intCast(integerify(y, r) & (n - 1)));
        blockXor(y, @alignCast(v[j * (32 * r) ..]), 2 * r);
        blockMix(&tmp, y, x, r);
    }

    for (x, 0..) |v1, j| {
        mem.writeInt(u32, b[4 * j ..][0..4], v1, .little);
    }
}

Params

Scrypt parameters

pub const Params = struct {
    const Self = @This();

    ln: u6,

    r: u30,

    p: u30,

    pub const interactive = Self.fromLimits(524288, 16777216);

    pub const sensitive = Self.fromLimits(33554432, 1073741824);

fromLimits()

The CPU/Memory cost parameter [ln] is log2(N). The [r]esource usage parameter specifies the block size. The [p]arallelization parameter. A large value of [p] can be used to increase the computational cost of scrypt without increasing the memory usage. Baseline parameters for interactive logins Baseline parameters for offline usage Create parameters from ops and mem limits, where mem_limit given in bytes

    pub fn fromLimits(ops_limit: u64, mem_limit: usize) Self {
        const ops = @max(32768, ops_limit);
        const r: u30 = 8;
        if (ops < mem_limit / 32) {
            const max_n = ops / (r * 4);
            return Self{ .r = r, .p = 1, .ln = @as(u6, @intCast(math.log2(max_n))) };
        } else {
            const max_n = mem_limit / (@as(usize, @intCast(r)) * 128);
            const ln = @as(u6, @intCast(math.log2(max_n)));
            const max_rp = @min(0x3fffffff, (ops / 4) / (@as(u64, 1) << ln));
            return Self{ .r = r, .p = @as(u30, @intCast(max_rp / @as(u64, r))), .ln = ln };
        }
    }
};

kdf()

Apply scrypt to generate a key from a password.

scrypt is defined in RFC 7914.

allocator: mem.Allocator.

derived_key: Slice of appropriate size for generated key. Generally 16 or 32 bytes in length. May be uninitialized. All bytes will be overwritten. Maximum size is derived_key.len / 32 == 0xffff_ffff.

password: Arbitrary sequence of bytes of any length.

salt: Arbitrary sequence of bytes of any length.

params: Params.

pub fn kdf(
    allocator: mem.Allocator,
    derived_key: []u8,
    password: []const u8,
    salt: []const u8,
    params: Params,
) KdfError!void {
    if (derived_key.len == 0) return KdfError.WeakParameters;
    if (derived_key.len / 32 > 0xffff_ffff) return KdfError.OutputTooLong;
    if (params.ln == 0 or params.r == 0 or params.p == 0) return KdfError.WeakParameters;

    const n64 = @as(u64, 1) << params.ln;
    if (n64 > max_size) return KdfError.WeakParameters;
    const n = @as(usize, @intCast(n64));
    if (@as(u64, params.r) * @as(u64, params.p) >= 1 << 30 or
        params.r > max_int / 128 / @as(u64, params.p) or
        params.r > max_int / 256 or
        n > max_int / 128 / @as(u64, params.r)) return KdfError.WeakParameters;

    var xy = try allocator.alignedAlloc(u32, 16, 64 * params.r);
    defer allocator.free(xy);
    var v = try allocator.alignedAlloc(u32, 16, 32 * n * params.r);
    defer allocator.free(v);
    var dk = try allocator.alignedAlloc(u8, 16, params.p * 128 * params.r);
    defer allocator.free(dk);

    try pwhash.pbkdf2(dk, password, salt, 1, HmacSha256);
    var i: u32 = 0;
    while (i < params.p) : (i += 1) {
        smix(@alignCast(dk[i * 128 * params.r ..]), params.r, n, v, xy);
    }
    try pwhash.pbkdf2(derived_key, password, dk, 1, HmacSha256);
}

const crypt_format = struct {
    pub const prefix = "$7$";

HashResult()

String prefix for scrypt Standard type for a set of scrypt parameters, with the salt and hash.

    pub fn HashResult(comptime crypt_max_hash_len: usize) type {
        return struct {
            ln: u6,
            r: u30,
            p: u30,
            salt: []const u8,
            hash: BinValue(crypt_max_hash_len),
        };
    }

    const Codec = CustomB64Codec("./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".*);

BinValue()

A wrapped binary value whose maximum size is max_len.

This type must be used whenever a binary value is encoded in a PHC-formatted string. This includes salt, hash, and any other binary parameters such as keys.

Once initialized, the actual value can be read with the constSlice() function.

    pub fn BinValue(comptime max_len: usize) type {
        return struct {
            const Self = @This();
            const capacity = max_len;
            const max_encoded_length = Codec.encodedLen(max_len);

            buf: [max_len]u8 = undefined,
            len: usize = 0,

fromSlice()

Wrap an existing byte slice

            pub fn fromSlice(slice: []const u8) EncodingError!Self {
                if (slice.len > capacity) return EncodingError.NoSpaceLeft;
                var bin_value: Self = undefined;
                @memcpy(bin_value.buf[0..slice.len], slice);
                bin_value.len = slice.len;
                return bin_value;
            }

constSlice()

Return the slice containing the actual value.

            pub fn constSlice(self: *const Self) []const u8 {
                return self.buf[0..self.len];
            }

            fn fromB64(self: *Self, str: []const u8) !void {
                const len = Codec.decodedLen(str.len);
                if (len > self.buf.len) return EncodingError.NoSpaceLeft;
                try Codec.decode(self.buf[0..len], str);
                self.len = len;
            }

            fn toB64(self: *const Self, buf: []u8) ![]const u8 {
                const value = self.constSlice();
                const len = Codec.encodedLen(value.len);
                if (len > buf.len) return EncodingError.NoSpaceLeft;
                var encoded = buf[0..len];
                Codec.encode(encoded, value);
                return encoded;
            }
        };
    }

saltFromBin()

Expand binary data into a salt for the modular crypt format.

    pub fn saltFromBin(comptime len: usize, salt: [len]u8) [Codec.encodedLen(len)]u8 {
        var buf: [Codec.encodedLen(len)]u8 = undefined;
        Codec.encode(&buf, &salt);
        return buf;
    }

deserialize()

Deserialize a string into a structure T (matching HashResult).

    pub fn deserialize(comptime T: type, str: []const u8) EncodingError!T {
        var out: T = undefined;

        if (str.len < 16) return EncodingError.InvalidEncoding;
        if (!mem.eql(u8, prefix, str[0..3])) return EncodingError.InvalidEncoding;
        out.ln = try Codec.intDecode(u6, str[3..4]);
        out.r = try Codec.intDecode(u30, str[4..9]);
        out.p = try Codec.intDecode(u30, str[9..14]);

        var it = mem.splitScalar(u8, str[14..], '$');

        const salt = it.first();
        if (@hasField(T, "salt")) out.salt = salt;

        const hash_str = it.next() orelse return EncodingError.InvalidEncoding;
        if (@hasField(T, "hash")) try out.hash.fromB64(hash_str);

        return out;
    }

serialize()

Serialize parameters into a string in modular crypt format.

    pub fn serialize(params: anytype, str: []u8) EncodingError![]const u8 {
        var buf = io.fixedBufferStream(str);
        try serializeTo(params, buf.writer());
        return buf.getWritten();
    }

calcSize()

Compute the number of bytes required to serialize params

    pub fn calcSize(params: anytype) usize {
        var buf = io.countingWriter(io.null_writer);
        serializeTo(params, buf.writer()) catch unreachable;
        return @as(usize, @intCast(buf.bytes_written));
    }

    fn serializeTo(params: anytype, out: anytype) !void {
        var header: [14]u8 = undefined;
        header[0..3].* = prefix.*;
        Codec.intEncode(header[3..4], params.ln);
        Codec.intEncode(header[4..9], params.r);
        Codec.intEncode(header[9..14], params.p);
        try out.writeAll(&header);
        try out.writeAll(params.salt);
        try out.writeAll("$");
        var buf: [@TypeOf(params.hash).max_encoded_length]u8 = undefined;
        const hash_str = try params.hash.toB64(&buf);
        try out.writeAll(hash_str);
    }

    fn CustomB64Codec(comptime map: [64]u8) type {
        return struct {
            const map64 = map;

            fn encodedLen(len: usize) usize {
                return (len * 4 + 2) / 3;
            }

            fn decodedLen(len: usize) usize {
                return len / 4 * 3 + (len % 4) * 3 / 4;
            }

            fn intEncode(dst: []u8, src: anytype) void {
                var n = src;
                for (dst) |*x| {
                    x.* = map64[@as(u6, @truncate(n))];
                    n = math.shr(@TypeOf(src), n, 6);
                }
            }

            fn intDecode(comptime T: type, src: *const [(@bitSizeOf(T) + 5) / 6]u8) !T {
                var v: T = 0;
                for (src, 0..) |x, i| {
                    const vi = mem.indexOfScalar(u8, &map64, x) orelse return EncodingError.InvalidEncoding;
                    v |= @as(T, @intCast(vi)) << @as(math.Log2Int(T), @intCast(i * 6));
                }
                return v;
            }

            fn decode(dst: []u8, src: []const u8) !void {
                std.debug.assert(dst.len == decodedLen(src.len));
                var i: usize = 0;
                while (i < src.len / 4) : (i += 1) {
                    mem.writeInt(u24, dst[i * 3 ..][0..3], try intDecode(u24, src[i * 4 ..][0..4]), .little);
                }
                const leftover = src[i * 4 ..];
                var v: u24 = 0;
                for (leftover, 0..) |_, j| {
                    v |= @as(u24, try intDecode(u6, leftover[j..][0..1])) << @as(u5, @intCast(j * 6));
                }
                for (dst[i * 3 ..], 0..) |*x, j| {
                    x.* = @as(u8, @truncate(v >> @as(u5, @intCast(j * 8))));
                }
            }

            fn encode(dst: []u8, src: []const u8) void {
                std.debug.assert(dst.len == encodedLen(src.len));
                var i: usize = 0;
                while (i < src.len / 3) : (i += 1) {
                    intEncode(dst[i * 4 ..][0..4], mem.readInt(u24, src[i * 3 ..][0..3], .little));
                }
                const leftover = src[i * 3 ..];
                var v: u24 = 0;
                for (leftover, 0..) |x, j| {
                    v |= @as(u24, x) << @as(u5, @intCast(j * 8));
                }
                intEncode(dst[i * 4 ..], v);
            }
        };
    }
};

const PhcFormatHasher = struct {
    const alg_id = "scrypt";
    const BinValue = phc_format.BinValue;

    const HashResult = struct {
        alg_id: []const u8,
        ln: u6,
        r: u30,
        p: u30,
        salt: BinValue(max_salt_len),
        hash: BinValue(max_hash_len),
    };

create()

Custom codec that maps 6 bits into 8 like regular Base64, but uses its own alphabet, encodes bits in little-endian, and can also encode integers. Hash and verify passwords using the PHC format. Return a non-deterministic hash of the password encoded as a PHC-format string

    pub fn create(
        allocator: mem.Allocator,
        password: []const u8,
        params: Params,
        buf: []u8,
    ) HasherError![]const u8 {
        var salt: [default_salt_len]u8 = undefined;
        crypto.random.bytes(&salt);

        var hash: [default_hash_len]u8 = undefined;
        try kdf(allocator, &hash, password, &salt, params);

        return phc_format.serialize(HashResult{
            .alg_id = alg_id,
            .ln = params.ln,
            .r = params.r,
            .p = params.p,
            .salt = try BinValue(max_salt_len).fromSlice(&salt),
            .hash = try BinValue(max_hash_len).fromSlice(&hash),
        }, buf);
    }

verify()

Verify a password against a PHC-format encoded string

    pub fn verify(
        allocator: mem.Allocator,
        str: []const u8,
        password: []const u8,
    ) HasherError!void {
        const hash_result = try phc_format.deserialize(HashResult, str);
        if (!mem.eql(u8, hash_result.alg_id, alg_id)) return HasherError.PasswordVerificationFailed;
        const params = Params{ .ln = hash_result.ln, .r = hash_result.r, .p = hash_result.p };
        const expected_hash = hash_result.hash.constSlice();
        var hash_buf: [max_hash_len]u8 = undefined;
        if (expected_hash.len > hash_buf.len) return HasherError.InvalidEncoding;
        var hash = hash_buf[0..expected_hash.len];
        try kdf(allocator, hash, password, hash_result.salt.constSlice(), params);
        if (!mem.eql(u8, hash, expected_hash)) return HasherError.PasswordVerificationFailed;
    }
};

const CryptFormatHasher = struct {
    const BinValue = crypt_format.BinValue;
    const HashResult = crypt_format.HashResult(max_hash_len);

    pub const pwhash_str_length: usize = 101;

create()

Hash and verify passwords using the modular crypt format. Length of a string returned by the create() function Return a non-deterministic hash of the password encoded into the modular crypt format

    pub fn create(
        allocator: mem.Allocator,
        password: []const u8,
        params: Params,
        buf: []u8,
    ) HasherError![]const u8 {
        var salt_bin: [default_salt_len]u8 = undefined;
        crypto.random.bytes(&salt_bin);
        const salt = crypt_format.saltFromBin(salt_bin.len, salt_bin);

        var hash: [default_hash_len]u8 = undefined;
        try kdf(allocator, &hash, password, &salt, params);

        return crypt_format.serialize(HashResult{
            .ln = params.ln,
            .r = params.r,
            .p = params.p,
            .salt = &salt,
            .hash = try BinValue(max_hash_len).fromSlice(&hash),
        }, buf);
    }

verify()

Verify a password against a string in modular crypt format

    pub fn verify(
        allocator: mem.Allocator,
        str: []const u8,
        password: []const u8,
    ) HasherError!void {
        const hash_result = try crypt_format.deserialize(HashResult, str);
        const params = Params{ .ln = hash_result.ln, .r = hash_result.r, .p = hash_result.p };
        const expected_hash = hash_result.hash.constSlice();
        var hash_buf: [max_hash_len]u8 = undefined;
        if (expected_hash.len > hash_buf.len) return HasherError.InvalidEncoding;
        var hash = hash_buf[0..expected_hash.len];
        try kdf(allocator, hash, password, hash_result.salt, params);
        if (!mem.eql(u8, hash, expected_hash)) return HasherError.PasswordVerificationFailed;
    }
};

HashOptions

Options for hashing a password.

Allocator is required for scrypt.

pub const HashOptions = struct {
    allocator: ?mem.Allocator,
    params: Params,
    encoding: pwhash.Encoding,
};

strHash()

Compute a hash of a password using the scrypt key derivation function. The function returns a string that includes all the parameters required for verification.

pub fn strHash(
    password: []const u8,
    options: HashOptions,
    out: []u8,
) Error![]const u8 {
    const allocator = options.allocator orelse return Error.AllocatorRequired;
    switch (options.encoding) {
        .phc => return PhcFormatHasher.create(allocator, password, options.params, out),
        .crypt => return CryptFormatHasher.create(allocator, password, options.params, out),
    }
}

VerifyOptions

Options for hash verification.

Allocator is required for scrypt.

pub const VerifyOptions = struct {
    allocator: ?mem.Allocator,
};

strVerify()

Verify that a previously computed hash is valid for a given password.

pub fn strVerify(
    str: []const u8,
    password: []const u8,
    options: VerifyOptions,
) Error!void {
    const allocator = options.allocator orelse return Error.AllocatorRequired;
    if (mem.startsWith(u8, str, crypt_format.prefix)) {
        return CryptFormatHasher.verify(allocator, str, password);
    } else {
        return PhcFormatHasher.verify(allocator, str, password);
    }
}

// These tests take way too long to run, so I have disabled them.
const run_long_tests = false;

Test:

kdf

test "kdf" {
    if (!run_long_tests) return error.SkipZigTest;

    const password = "testpass";
    const salt = "saltsalt";

    var dk: [32]u8 = undefined;
    try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 15, .r = 8, .p = 1 });

    const hex = "1e0f97c3f6609024022fbe698da29c2fe53ef1087a8e396dc6d5d2a041e886de";
    var bytes: [hex.len / 2]u8 = undefined;
    _ = try fmt.hexToBytes(&bytes, hex);

    try std.testing.expectEqualSlices(u8, &bytes, &dk);
}

Test:

kdf rfc 1

test "kdf rfc 1" {
    if (!run_long_tests) return error.SkipZigTest;

    const password = "";
    const salt = "";

    var dk: [64]u8 = undefined;
    try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 4, .r = 1, .p = 1 });

    const hex = "77d6576238657b203b19ca42c18a0497f16b4844e3074ae8dfdffa3fede21442fcd0069ded0948f8326a753a0fc81f17e8d3e0fb2e0d3628cf35e20c38d18906";
    var bytes: [hex.len / 2]u8 = undefined;
    _ = try fmt.hexToBytes(&bytes, hex);

    try std.testing.expectEqualSlices(u8, &bytes, &dk);
}

Test:

kdf rfc 2

test "kdf rfc 2" {
    if (!run_long_tests) return error.SkipZigTest;

    const password = "password";
    const salt = "NaCl";

    var dk: [64]u8 = undefined;
    try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 10, .r = 8, .p = 16 });

    const hex = "fdbabe1c9d3472007856e7190d01e9fe7c6ad7cbc8237830e77376634b3731622eaf30d92e22a3886ff109279d9830dac727afb94a83ee6d8360cbdfa2cc0640";
    var bytes: [hex.len / 2]u8 = undefined;
    _ = try fmt.hexToBytes(&bytes, hex);

    try std.testing.expectEqualSlices(u8, &bytes, &dk);
}

Test:

kdf rfc 3

test "kdf rfc 3" {
    if (!run_long_tests) return error.SkipZigTest;

    const password = "pleaseletmein";
    const salt = "SodiumChloride";

    var dk: [64]u8 = undefined;
    try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 14, .r = 8, .p = 1 });

    const hex = "7023bdcb3afd7348461c06cd81fd38ebfda8fbba904f8e3ea9b543f6545da1f2d5432955613f0fcf62d49705242a9af9e61e85dc0d651e40dfcf017b45575887";
    var bytes: [hex.len / 2]u8 = undefined;
    _ = try fmt.hexToBytes(&bytes, hex);

    try std.testing.expectEqualSlices(u8, &bytes, &dk);
}

Test:

kdf rfc 4

test "kdf rfc 4" {
    if (!run_long_tests) return error.SkipZigTest;

    const password = "pleaseletmein";
    const salt = "SodiumChloride";

    var dk: [64]u8 = undefined;
    try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 20, .r = 8, .p = 1 });

    const hex = "2101cb9b6a511aaeaddbbe09cf70f881ec568d574a2ffd4dabe5ee9820adaa478e56fd8f4ba5d09ffa1c6d927c40f4c337304049e8a952fbcbf45c6fa77a41a4";
    var bytes: [hex.len / 2]u8 = undefined;
    _ = try fmt.hexToBytes(&bytes, hex);

    try std.testing.expectEqualSlices(u8, &bytes, &dk);
}

Test:

password hashing (crypt format)

test "password hashing (crypt format)" {
    if (!run_long_tests) return error.SkipZigTest;

    const alloc = std.testing.allocator;

    const str = "$7$A6....1....TrXs5Zk6s8sWHpQgWDIXTR8kUU3s6Jc3s.DtdS8M2i4$a4ik5hGDN7foMuHOW.cp.CtX01UyCeO0.JAG.AHPpx5";
    const password = "Y0!?iQa9M%5ekffW(`";
    try CryptFormatHasher.verify(alloc, str, password);

    const params = Params.interactive;
    var buf: [CryptFormatHasher.pwhash_str_length]u8 = undefined;
    const str2 = try CryptFormatHasher.create(alloc, password, params, &buf);
    try CryptFormatHasher.verify(alloc, str2, password);
}

Test:

strHash and strVerify

test "strHash and strVerify" {
    if (!run_long_tests) return error.SkipZigTest;

    const alloc = std.testing.allocator;

    const password = "testpass";
    const params = Params.interactive;
    const verify_options = VerifyOptions{ .allocator = alloc };
    var buf: [128]u8 = undefined;

    {
        const str = try strHash(
            password,
            .{ .allocator = alloc, .params = params, .encoding = .crypt },
            &buf,
        );
        try strVerify(str, password, verify_options);
    }
    {
        const str = try strHash(
            password,
            .{ .allocator = alloc, .params = params, .encoding = .phc },
            &buf,
        );
        try strVerify(str, password, verify_options);
    }
}

Test:

unix-scrypt

test "unix-scrypt" {
    if (!run_long_tests) return error.SkipZigTest;

    const alloc = std.testing.allocator;

    // https://gitlab.com/jas/scrypt-unix-crypt/blob/master/unix-scrypt.txt
    {
        const str = "$7$C6..../....SodiumChloride$kBGj9fHznVYFQMEn/qDCfrDevf9YDtcDdKvEqHJLV8D";
        const password = "pleaseletmein";
        try strVerify(str, password, .{ .allocator = alloc });
    }
    // one of the libsodium test vectors
    {
        const str = "$7$B6....1....75gBMAGwfFWZqBdyF3WdTQnWdUsuTiWjG1fF9c1jiSD$tc8RoB3.Em3/zNgMLWo2u00oGIoTyJv4fl3Fl8Tix72";
        const password = "^T5H$JYt39n%K*j:W]!1s?vg!:jGi]Ax?..l7[p0v:1jHTpla9;]bUN;?bWyCbtqg nrDFal+Jxl3,2`#^tFSu%v_+7iYse8-cCkNf!tD=KrW)";
        try strVerify(str, password, .{ .allocator = alloc });
    }
}

Test:

crypt format

test "crypt format" {
    const str = "$7$C6..../....SodiumChloride$kBGj9fHznVYFQMEn/qDCfrDevf9YDtcDdKvEqHJLV8D";
    const params = try crypt_format.deserialize(crypt_format.HashResult(32), str);
    var buf: [str.len]u8 = undefined;
    const s1 = try crypt_format.serialize(params, &buf);
    try std.testing.expectEqualStrings(s1, str);
}

Test:

kdf fast

test "kdf fast" {
    const TestVector = struct {
        password: []const u8,
        salt: []const u8,
        params: Params,
        want: []const u8,
    };
    const test_vectors = [_]TestVector{
        .{
            .password = "p",
            .salt = "s",
            .params = .{ .ln = 1, .r = 1, .p = 1 },
            .want = &([_]u8{
                0x48, 0xb0, 0xd2, 0xa8, 0xa3, 0x27, 0x26, 0x11,
                0x98, 0x4c, 0x50, 0xeb, 0xd6, 0x30, 0xaf, 0x52,
            }),
        },
    };
    inline for (test_vectors) |v| {
        var dk: [v.want.len]u8 = undefined;
        try kdf(std.testing.allocator, &dk, v.password, v.salt, v.params);
        try std.testing.expectEqualSlices(u8, &dk, v.want);
    }
}