|
const std = @import("std"); const assert = std.debug.assert; const testing = std.testing; const EnumField = std.builtin.Type.EnumField; |
EnumFieldStruct()Returns a struct with a field matching each unique named enum element. If the enum is extern and has multiple names for the same value, only the first name is used. Each field is of type Data and has the provided default, which may be undefined. |
pub fn EnumFieldStruct(comptime E: type, comptime Data: type, comptime field_default: ?Data) type { const StructField = std.builtin.Type.StructField; var fields: []const StructField = &[_]StructField{}; for (std.meta.fields(E)) |field| { fields = fields ++ &[_]StructField{.{ .name = field.name, .type = Data, .default_value = if (field_default) |d| @as(?*const anyopaque, @ptrCast(&d)) else null, .is_comptime = false, .alignment = if (@sizeOf(Data) > 0) @alignOf(Data) else 0, }}; } return @Type(.{ .Struct = .{ .layout = .Auto, .fields = fields, .decls = &.{}, .is_tuple = false, } }); } |
valuesFromFields()Looks up the supplied fields in the given enum type. Uses only the field names, field values are ignored. The result array is in the same order as the input. |
pub inline fn valuesFromFields(comptime E: type, comptime fields: []const EnumField) []const E { comptime { var result: [fields.len]E = undefined; for (fields, 0..) |f, i| { result[i] = @field(E, f.name); } return &result; } } |
values()Returns the set of all named values in the given enum, in declaration order. |
pub fn values(comptime E: type) []const E { return comptime valuesFromFields(E, @typeInfo(E).Enum.fields); } |
tagName() A safe alternative to @tagName() for non-exhaustive enums that doesn't panic when |
pub fn tagName(comptime E: type, e: E) ?[]const u8 { return inline for (@typeInfo(E).Enum.fields) |f| { if (@intFromEnum(e) == f.value) break f.name; } else null; } |
Test: tagName |
test tagName { const E = enum(u8) { a, b, _ }; try testing.expect(tagName(E, .a) != null); try testing.expectEqualStrings("a", tagName(E, .a).?); try testing.expect(tagName(E, @as(E, @enumFromInt(42))) == null); } |
directEnumArrayLen()Determines the length of a direct-mapped enum array, indexed by @intCast(usize, @intFromEnum(enum_value)). If the enum is non-exhaustive, the resulting length will only be enough to hold all explicit fields. If the enum contains any fields with values that cannot be represented by usize, a compile error is issued. The max_unused_slots parameter limits the total number of items which have no matching enum key (holes in the enum numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots must be at least 3, to allow unused slots 0, 3, and 4. |
pub fn directEnumArrayLen(comptime E: type, comptime max_unused_slots: comptime_int) comptime_int { var max_value: comptime_int = -1; const max_usize: comptime_int = ~@as(usize, 0); const fields = std.meta.fields(E); for (fields) |f| { if (f.value < 0) { @compileError("Cannot create a direct enum array for " ++ @typeName(E) ++ ", field ." ++ f.name ++ " has a negative value."); } if (f.value > max_value) { if (f.value > max_usize) { @compileError("Cannot create a direct enum array for " ++ @typeName(E) ++ ", field ." ++ f.name ++ " is larger than the max value of usize."); } max_value = f.value; } } const unused_slots = max_value + 1 - fields.len; if (unused_slots > max_unused_slots) { const unused_str = std.fmt.comptimePrint("{d}", .{unused_slots}); const allowed_str = std.fmt.comptimePrint("{d}", .{max_unused_slots}); @compileError("Cannot create a direct enum array for " ++ @typeName(E) ++ ". It would have " ++ unused_str ++ " unused slots, but only " ++ allowed_str ++ " are allowed."); } return max_value + 1; } |
directEnumArray()Initializes an array of Data which can be indexed by @intCast(usize, @intFromEnum(enum_value)). If the enum is non-exhaustive, the resulting array will only be large enough to hold all explicit fields. If the enum contains any fields with values that cannot be represented by usize, a compile error is issued. The max_unused_slots parameter limits the total number of items which have no matching enum key (holes in the enum numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots must be at least 3, to allow unused slots 0, 3, and 4. The init_values parameter must be a struct with field names that match the enum values. If the enum has multiple fields with the same value, the name of the first one must be used. |
pub fn directEnumArray( comptime E: type, comptime Data: type, comptime max_unused_slots: comptime_int, init_values: EnumFieldStruct(E, Data, null), ) [directEnumArrayLen(E, max_unused_slots)]Data { return directEnumArrayDefault(E, Data, null, max_unused_slots, init_values); } |
Test:std.enums.directEnumArray |
test "std.enums.directEnumArray" { const E = enum(i4) { a = 4, b = 6, c = 2 }; var runtime_false: bool = false; const array = directEnumArray(E, bool, 4, .{ .a = true, .b = runtime_false, .c = true, }); try testing.expectEqual([7]bool, @TypeOf(array)); try testing.expectEqual(true, array[4]); try testing.expectEqual(false, array[6]); try testing.expectEqual(true, array[2]); } |
directEnumArrayDefault()Initializes an array of Data which can be indexed by @intCast(usize, @intFromEnum(enum_value)). The enum must be exhaustive. If the enum contains any fields with values that cannot be represented by usize, a compile error is issued. The max_unused_slots parameter limits the total number of items which have no matching enum key (holes in the enum numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots must be at least 3, to allow unused slots 0, 3, and 4. The init_values parameter must be a struct with field names that match the enum values. If the enum has multiple fields with the same value, the name of the first one must be used. |
pub fn directEnumArrayDefault( comptime E: type, comptime Data: type, comptime default: ?Data, comptime max_unused_slots: comptime_int, init_values: EnumFieldStruct(E, Data, default), ) [directEnumArrayLen(E, max_unused_slots)]Data { const len = comptime directEnumArrayLen(E, max_unused_slots); var result: [len]Data = if (default) |d| [_]Data{d} ** len else undefined; inline for (@typeInfo(@TypeOf(init_values)).Struct.fields) |f| { const enum_value = @field(E, f.name); const index = @as(usize, @intCast(@intFromEnum(enum_value))); result[index] = @field(init_values, f.name); } return result; } |
Test:std.enums.directEnumArrayDefault |
test "std.enums.directEnumArrayDefault" { const E = enum(i4) { a = 4, b = 6, c = 2 }; var runtime_false: bool = false; const array = directEnumArrayDefault(E, bool, false, 4, .{ .a = true, .b = runtime_false, }); try testing.expectEqual([7]bool, @TypeOf(array)); try testing.expectEqual(true, array[4]); try testing.expectEqual(false, array[6]); try testing.expectEqual(false, array[2]); } |
Test:std.enums.directEnumArrayDefault slice |
test "std.enums.directEnumArrayDefault slice" { const E = enum(i4) { a = 4, b = 6, c = 2 }; var runtime_b = "b"; const array = directEnumArrayDefault(E, []const u8, "default", 4, .{ .a = "a", .b = runtime_b, }); try testing.expectEqual([7][]const u8, @TypeOf(array)); try testing.expectEqualSlices(u8, "a", array[4]); try testing.expectEqualSlices(u8, "b", array[6]); try testing.expectEqualSlices(u8, "default", array[2]); } |
nameCast()Cast an enum literal, value, or string to the enum value of type E with the same name. |
pub fn nameCast(comptime E: type, comptime value: anytype) E { return comptime blk: { const V = @TypeOf(value); if (V == E) break :blk value; var name: ?[]const u8 = switch (@typeInfo(V)) { .EnumLiteral, .Enum => @tagName(value), .Pointer => if (std.meta.trait.isZigString(V)) value else null, else => null, }; if (name) |n| { if (@hasField(E, n)) { break :blk @field(E, n); } @compileError("Enum " ++ @typeName(E) ++ " has no field named " ++ n); } @compileError("Cannot cast from " ++ @typeName(@TypeOf(value)) ++ " to " ++ @typeName(E)); }; } |
Test:std.enums.nameCast |
test "std.enums.nameCast" { const A = enum(u1) { a = 0, b = 1 }; const B = enum(u1) { a = 1, b = 0 }; try testing.expectEqual(A.a, nameCast(A, .a)); try testing.expectEqual(A.a, nameCast(A, A.a)); try testing.expectEqual(A.a, nameCast(A, B.a)); try testing.expectEqual(A.a, nameCast(A, "a")); try testing.expectEqual(A.a, nameCast(A, @as(*const [1]u8, "a"))); try testing.expectEqual(A.a, nameCast(A, @as([:0]const u8, "a"))); try testing.expectEqual(A.a, nameCast(A, @as([]const u8, "a"))); try testing.expectEqual(B.a, nameCast(B, .a)); try testing.expectEqual(B.a, nameCast(B, A.a)); try testing.expectEqual(B.a, nameCast(B, B.a)); try testing.expectEqual(B.a, nameCast(B, "a")); try testing.expectEqual(B.b, nameCast(B, .b)); try testing.expectEqual(B.b, nameCast(B, A.b)); try testing.expectEqual(B.b, nameCast(B, B.b)); try testing.expectEqual(B.b, nameCast(B, "b")); } |
EnumSet()A set of enum elements, backed by a bitfield. If the enum is not dense, a mapping will be constructed from enum values to dense indices. This type does no dynamic allocation and can be copied by value. |
pub fn EnumSet(comptime E: type) type { const mixin = struct { fn EnumSetExt(comptime Self: type) type { const Indexer = Self.Indexer; return struct { |
init()Initializes the set using a struct of bools |
pub fn init(init_values: EnumFieldStruct(E, bool, false)) Self { var result = Self{}; comptime var i: usize = 0; inline while (i < Self.len) : (i += 1) { const key = comptime Indexer.keyForIndex(i); const tag = comptime @tagName(key); if (@field(init_values, tag)) { result.bits.set(i); } } return result; } }; } }; return IndexedSet(EnumIndexer(E), mixin.EnumSetExt); } |
EnumMap()A map keyed by an enum, backed by a bitfield and a dense array. If the enum is not dense, a mapping will be constructed from enum values to dense indices. This type does no dynamic allocation and can be copied by value. |
pub fn EnumMap(comptime E: type, comptime V: type) type { const mixin = struct { fn EnumMapExt(comptime Self: type) type { const Indexer = Self.Indexer; return struct { |
init()Initializes the map using a sparse struct of optionals |
pub fn init(init_values: EnumFieldStruct(E, ?V, @as(?V, null))) Self { var result = Self{}; comptime var i: usize = 0; inline while (i < Self.len) : (i += 1) { const key = comptime Indexer.keyForIndex(i); const tag = comptime @tagName(key); if (@field(init_values, tag)) |*v| { result.bits.set(i); result.values[i] = v.*; } } return result; } |
initFull()Initializes a full mapping with all keys set to value. Consider using EnumArray instead if the map will remain full. |
pub fn initFull(value: V) Self { var result = Self{ .bits = Self.BitSet.initFull(), .values = undefined, }; @memset(&result.values, value); return result; } |
initFullWith()Initializes a full mapping with supplied values. Consider using EnumArray instead if the map will remain full. |
pub fn initFullWith(init_values: EnumFieldStruct(E, V, @as(?V, null))) Self { return initFullWithDefault(@as(?V, null), init_values); } |
initFullWithDefault()Initializes a full mapping with a provided default. Consider using EnumArray instead if the map will remain full. |
pub fn initFullWithDefault(comptime default: ?V, init_values: EnumFieldStruct(E, V, default)) Self { var result = Self{ .bits = Self.BitSet.initFull(), .values = undefined, }; comptime var i: usize = 0; inline while (i < Self.len) : (i += 1) { const key = comptime Indexer.keyForIndex(i); const tag = comptime @tagName(key); result.values[i] = @field(init_values, tag); } return result; } }; } }; return IndexedMap(EnumIndexer(E), V, mixin.EnumMapExt); } |
EnumMultiset()A multiset of enum elements up to a count of usize. Backed by an EnumArray. This type does no dynamic allocation and can be copied by value. |
pub fn EnumMultiset(comptime E: type) type { return BoundedEnumMultiset(E, usize); } |
BoundedEnumMultiset()A multiset of enum elements up to CountSize. Backed by an EnumArray. This type does no dynamic allocation and can be copied by value. |
pub fn BoundedEnumMultiset(comptime E: type, comptime CountSize: type) type { return struct { const Self = @This(); counts: EnumArray(E, CountSize), |
init()Initializes the multiset using a struct of counts. |
pub fn init(init_counts: EnumFieldStruct(E, CountSize, 0)) Self { var self = initWithCount(0); inline for (@typeInfo(E).Enum.fields) |field| { const c = @field(init_counts, field.name); const key = @as(E, @enumFromInt(field.value)); self.counts.set(key, c); } return self; } |
initEmpty()Initializes the multiset with a count of zero. |
pub fn initEmpty() Self { return initWithCount(0); } |
initWithCount()Initializes the multiset with all keys at the same count. |
pub fn initWithCount(comptime c: CountSize) Self { return .{ .counts = EnumArray(E, CountSize).initDefault(c, .{}), }; } |
count()Returns the total number of key counts in the multiset. |
pub fn count(self: Self) usize { var sum: usize = 0; for (self.counts.values) |c| { sum += c; } return sum; } |
contains()Checks if at least one key in multiset. |
pub fn contains(self: Self, key: E) bool { return self.counts.get(key) > 0; } |
removeAll()Removes all instance of a key from multiset. Same as setCount(key, 0). |
pub fn removeAll(self: *Self, key: E) void { return self.counts.set(key, 0); } |
addAssertSafe()Increases the key count by given amount. Caller asserts operation will not overflow. |
pub fn addAssertSafe(self: *Self, key: E, c: CountSize) void { self.counts.getPtr(key).* += c; } |
add()Increases the key count by given amount. |
pub fn add(self: *Self, key: E, c: CountSize) error{Overflow}!void { self.counts.set(key, try std.math.add(CountSize, self.counts.get(key), c)); } |
remove()Decreases the key count by given amount. If amount is greater than the number of keys in multset, then key count will be set to zero. |
pub fn remove(self: *Self, key: E, c: CountSize) void { self.counts.getPtr(key).* -= @min(self.getCount(key), c); } |
getCount()Returns the count for a key. |
pub fn getCount(self: Self, key: E) CountSize { return self.counts.get(key); } |
setCount()Set the count for a key. |
pub fn setCount(self: *Self, key: E, c: CountSize) void { self.counts.set(key, c); } |
addSetAssertSafe()Increases the all key counts by given multiset. Caller asserts operation will not overflow any key. |
pub fn addSetAssertSafe(self: *Self, other: Self) void { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); self.addAssertSafe(key, other.getCount(key)); } } |
addSet()Increases the all key counts by given multiset. |
pub fn addSet(self: *Self, other: Self) error{Overflow}!void { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); try self.add(key, other.getCount(key)); } } |
removeSet()Decreases the all key counts by given multiset. If the given multiset has more key counts than this, then that key will have a key count of zero. |
pub fn removeSet(self: *Self, other: Self) void { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); self.remove(key, other.getCount(key)); } } |
eql()Returns true iff all key counts are the same as given multiset. |
pub fn eql(self: Self, other: Self) bool { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); if (self.getCount(key) != other.getCount(key)) { return false; } } return true; } |
subsetOf()Returns true iff all key counts less than or equal to the given multiset. |
pub fn subsetOf(self: Self, other: Self) bool { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); if (self.getCount(key) > other.getCount(key)) { return false; } } return true; } |
supersetOf()Returns true iff all key counts greater than or equal to the given multiset. |
pub fn supersetOf(self: Self, other: Self) bool { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); if (self.getCount(key) < other.getCount(key)) { return false; } } return true; } |
plusAssertSafe()Returns a multiset with the total key count of this multiset and the other multiset. Caller asserts operation will not overflow any key. |
pub fn plusAssertSafe(self: Self, other: Self) Self { var result = self; result.addSetAssertSafe(other); return result; } |
plus()Returns a multiset with the total key count of this multiset and the other multiset. |
pub fn plus(self: Self, other: Self) error{Overflow}!Self { var result = self; try result.addSet(other); return result; } |
minus()Returns a multiset with the key count of this multiset minus the corresponding key count in the other multiset. If the other multiset contains more key count than this set, that key will have a count of zero. |
pub fn minus(self: Self, other: Self) Self { var result = self; result.removeSet(other); return result; } pub const Entry = EnumArray(E, CountSize).Entry; pub const Iterator = EnumArray(E, CountSize).Iterator; |
iterator()Returns an iterator over this multiset. Keys with zero counts are included. Modifications to the set during iteration may or may not be observed by the iterator, but will not invalidate it. |
pub fn iterator(self: *Self) Iterator { return self.counts.iterator(); } }; } |
Test:EnumMultiset |
test "EnumMultiset" { const Ball = enum { red, green, blue }; const empty = EnumMultiset(Ball).initEmpty(); const r0_g1_b2 = EnumMultiset(Ball).init(.{ .red = 0, .green = 1, .blue = 2, }); const ten_of_each = EnumMultiset(Ball).initWithCount(10); try testing.expectEqual(empty.count(), 0); try testing.expectEqual(r0_g1_b2.count(), 3); try testing.expectEqual(ten_of_each.count(), 30); try testing.expect(!empty.contains(.red)); try testing.expect(!empty.contains(.green)); try testing.expect(!empty.contains(.blue)); try testing.expect(!r0_g1_b2.contains(.red)); try testing.expect(r0_g1_b2.contains(.green)); try testing.expect(r0_g1_b2.contains(.blue)); try testing.expect(ten_of_each.contains(.red)); try testing.expect(ten_of_each.contains(.green)); try testing.expect(ten_of_each.contains(.blue)); { var copy = ten_of_each; copy.removeAll(.red); try testing.expect(!copy.contains(.red)); // removeAll second time does nothing copy.removeAll(.red); try testing.expect(!copy.contains(.red)); } { var copy = ten_of_each; copy.addAssertSafe(.red, 6); try testing.expectEqual(copy.getCount(.red), 16); } { var copy = ten_of_each; try copy.add(.red, 6); try testing.expectEqual(copy.getCount(.red), 16); try testing.expectError(error.Overflow, copy.add(.red, std.math.maxInt(usize))); } { var copy = ten_of_each; copy.remove(.red, 4); try testing.expectEqual(copy.getCount(.red), 6); // subtracting more it contains does not underflow copy.remove(.green, 14); try testing.expectEqual(copy.getCount(.green), 0); } try testing.expectEqual(empty.getCount(.green), 0); try testing.expectEqual(r0_g1_b2.getCount(.green), 1); try testing.expectEqual(ten_of_each.getCount(.green), 10); { var copy = empty; copy.setCount(.red, 6); try testing.expectEqual(copy.getCount(.red), 6); } { var copy = r0_g1_b2; copy.addSetAssertSafe(ten_of_each); try testing.expectEqual(copy.getCount(.red), 10); try testing.expectEqual(copy.getCount(.green), 11); try testing.expectEqual(copy.getCount(.blue), 12); } { var copy = r0_g1_b2; try copy.addSet(ten_of_each); try testing.expectEqual(copy.getCount(.red), 10); try testing.expectEqual(copy.getCount(.green), 11); try testing.expectEqual(copy.getCount(.blue), 12); const full = EnumMultiset(Ball).initWithCount(std.math.maxInt(usize)); try testing.expectError(error.Overflow, copy.addSet(full)); } { var copy = ten_of_each; copy.removeSet(r0_g1_b2); try testing.expectEqual(copy.getCount(.red), 10); try testing.expectEqual(copy.getCount(.green), 9); try testing.expectEqual(copy.getCount(.blue), 8); copy.removeSet(ten_of_each); try testing.expectEqual(copy.getCount(.red), 0); try testing.expectEqual(copy.getCount(.green), 0); try testing.expectEqual(copy.getCount(.blue), 0); } try testing.expect(empty.eql(empty)); try testing.expect(r0_g1_b2.eql(r0_g1_b2)); try testing.expect(ten_of_each.eql(ten_of_each)); try testing.expect(!empty.eql(r0_g1_b2)); try testing.expect(!r0_g1_b2.eql(ten_of_each)); try testing.expect(!ten_of_each.eql(empty)); try testing.expect(empty.subsetOf(empty)); try testing.expect(r0_g1_b2.subsetOf(r0_g1_b2)); try testing.expect(empty.subsetOf(r0_g1_b2)); try testing.expect(r0_g1_b2.subsetOf(ten_of_each)); try testing.expect(!ten_of_each.subsetOf(r0_g1_b2)); try testing.expect(!r0_g1_b2.subsetOf(empty)); try testing.expect(empty.supersetOf(empty)); try testing.expect(r0_g1_b2.supersetOf(r0_g1_b2)); try testing.expect(r0_g1_b2.supersetOf(empty)); try testing.expect(ten_of_each.supersetOf(r0_g1_b2)); try testing.expect(!r0_g1_b2.supersetOf(ten_of_each)); try testing.expect(!empty.supersetOf(r0_g1_b2)); { // with multisets it could be the case where two // multisets are neither subset nor superset of each // other. const r10 = EnumMultiset(Ball).init(.{ .red = 10, }); const b10 = EnumMultiset(Ball).init(.{ .blue = 10, }); try testing.expect(!r10.subsetOf(b10)); try testing.expect(!b10.subsetOf(r10)); try testing.expect(!r10.supersetOf(b10)); try testing.expect(!b10.supersetOf(r10)); } { const result = r0_g1_b2.plusAssertSafe(ten_of_each); try testing.expectEqual(result.getCount(.red), 10); try testing.expectEqual(result.getCount(.green), 11); try testing.expectEqual(result.getCount(.blue), 12); } { const result = try r0_g1_b2.plus(ten_of_each); try testing.expectEqual(result.getCount(.red), 10); try testing.expectEqual(result.getCount(.green), 11); try testing.expectEqual(result.getCount(.blue), 12); const full = EnumMultiset(Ball).initWithCount(std.math.maxInt(usize)); try testing.expectError(error.Overflow, result.plus(full)); } { const result = ten_of_each.minus(r0_g1_b2); try testing.expectEqual(result.getCount(.red), 10); try testing.expectEqual(result.getCount(.green), 9); try testing.expectEqual(result.getCount(.blue), 8); } { const result = ten_of_each.minus(r0_g1_b2).minus(ten_of_each); try testing.expectEqual(result.getCount(.red), 0); try testing.expectEqual(result.getCount(.green), 0); try testing.expectEqual(result.getCount(.blue), 0); } { var copy = empty; var it = copy.iterator(); var entry = it.next().?; try testing.expectEqual(entry.key, .red); try testing.expectEqual(entry.value.*, 0); entry = it.next().?; try testing.expectEqual(entry.key, .green); try testing.expectEqual(entry.value.*, 0); entry = it.next().?; try testing.expectEqual(entry.key, .blue); try testing.expectEqual(entry.value.*, 0); try testing.expectEqual(it.next(), null); } { var copy = r0_g1_b2; var it = copy.iterator(); var entry = it.next().?; try testing.expectEqual(entry.key, .red); try testing.expectEqual(entry.value.*, 0); entry = it.next().?; try testing.expectEqual(entry.key, .green); try testing.expectEqual(entry.value.*, 1); entry = it.next().?; try testing.expectEqual(entry.key, .blue); try testing.expectEqual(entry.value.*, 2); try testing.expectEqual(it.next(), null); } } |
EnumArray()An array keyed by an enum, backed by a dense array. If the enum is not dense, a mapping will be constructed from enum values to dense indices. This type does no dynamic allocation and can be copied by value. |
pub fn EnumArray(comptime E: type, comptime V: type) type { const mixin = struct { fn EnumArrayExt(comptime Self: type) type { const Indexer = Self.Indexer; return struct { |
init()Initializes all values in the enum array |
pub fn init(init_values: EnumFieldStruct(E, V, @as(?V, null))) Self { return initDefault(@as(?V, null), init_values); } |
initDefault()Initializes values in the enum array, with the specified default. |
pub fn initDefault(comptime default: ?V, init_values: EnumFieldStruct(E, V, default)) Self { var result = Self{ .values = undefined }; comptime var i: usize = 0; inline while (i < Self.len) : (i += 1) { const key = comptime Indexer.keyForIndex(i); const tag = @tagName(key); result.values[i] = @field(init_values, tag); } return result; } }; } }; return IndexedArray(EnumIndexer(E), V, mixin.EnumArrayExt); } fn NoExtension(comptime Self: type) type { _ = Self; return NoExt; } const NoExt = struct {}; |
IndexedSet()A set type with an Indexer mapping from keys to indices. Presence or absence is stored as a dense bitfield. This type does no allocation and can be copied by value. |
pub fn IndexedSet(comptime I: type, comptime Ext: ?fn (type) type) type { comptime ensureIndexer(I); return struct { const Self = @This(); pub usingnamespace (Ext orelse NoExtension)(Self); pub const Indexer = I; pub const Key = Indexer.Key; const BitSet = std.StaticBitSet(Indexer.count); pub const len = Indexer.count; bits: BitSet = BitSet.initEmpty(), |
initEmpty()The indexing rules for converting between keys and indices. The element type for this set. The maximum number of items in this set. Returns a set containing no keys. |
pub fn initEmpty() Self { return .{ .bits = BitSet.initEmpty() }; } |
initFull()Returns a set containing all possible keys. |
pub fn initFull() Self { return .{ .bits = BitSet.initFull() }; } |
initMany()Returns a set containing multiple keys. |
pub fn initMany(keys: []const Key) Self { var set = initEmpty(); for (keys) |key| set.insert(key); return set; } |
initOne()Returns a set containing a single key. |
pub fn initOne(key: Key) Self { return initMany(&[_]Key{key}); } |
count()Returns the number of keys in the set. |
pub fn count(self: Self) usize { return self.bits.count(); } |
contains()Checks if a key is in the set. |
pub fn contains(self: Self, key: Key) bool { return self.bits.isSet(Indexer.indexOf(key)); } |
insert()Puts a key in the set. |
pub fn insert(self: *Self, key: Key) void { self.bits.set(Indexer.indexOf(key)); } |
remove()Removes a key from the set. |
pub fn remove(self: *Self, key: Key) void { self.bits.unset(Indexer.indexOf(key)); } |
setPresent()Changes the presence of a key in the set to match the passed bool. |
pub fn setPresent(self: *Self, key: Key, present: bool) void { self.bits.setValue(Indexer.indexOf(key), present); } |
toggle()Toggles the presence of a key in the set. If the key is in the set, removes it. Otherwise adds it. |
pub fn toggle(self: *Self, key: Key) void { self.bits.toggle(Indexer.indexOf(key)); } |
toggleSet()Toggles the presence of all keys in the passed set. |
pub fn toggleSet(self: *Self, other: Self) void { self.bits.toggleSet(other.bits); } |
toggleAll()Toggles all possible keys in the set. |
pub fn toggleAll(self: *Self) void { self.bits.toggleAll(); } |
setUnion()Adds all keys in the passed set to this set. |
pub fn setUnion(self: *Self, other: Self) void { self.bits.setUnion(other.bits); } |
setIntersection()Removes all keys which are not in the passed set. |
pub fn setIntersection(self: *Self, other: Self) void { self.bits.setIntersection(other.bits); } |
eql()Returns true iff both sets have the same keys. |
pub fn eql(self: Self, other: Self) bool { return self.bits.eql(other.bits); } |
subsetOf()Returns true iff all the keys in this set are in the other set. The other set may have keys not found in this set. |
pub fn subsetOf(self: Self, other: Self) bool { return self.bits.subsetOf(other.bits); } |
supersetOf()Returns true iff this set contains all the keys in the other set. This set may have keys not found in the other set. |
pub fn supersetOf(self: Self, other: Self) bool { return self.bits.supersetOf(other.bits); } |
complement()Returns a set with all the keys not in this set. |
pub fn complement(self: Self) Self { return .{ .bits = self.bits.complement() }; } |
unionWith()Returns a set with keys that are in either this set or the other set. |
pub fn unionWith(self: Self, other: Self) Self { return .{ .bits = self.bits.unionWith(other.bits) }; } |
intersectWith()Returns a set with keys that are in both this set and the other set. |
pub fn intersectWith(self: Self, other: Self) Self { return .{ .bits = self.bits.intersectWith(other.bits) }; } |
xorWith()Returns a set with keys that are in either this set or the other set, but not both. |
pub fn xorWith(self: Self, other: Self) Self { return .{ .bits = self.bits.xorWith(other.bits) }; } |
differenceWith()Returns a set with keys that are in this set except for keys in the other set. |
pub fn differenceWith(self: Self, other: Self) Self { return .{ .bits = self.bits.differenceWith(other.bits) }; } |
iterator()Returns an iterator over this set, which iterates in index order. Modifications to the set during iteration may or may not be observed by the iterator, but will not invalidate it. |
pub fn iterator(self: *const Self) Iterator { return .{ .inner = self.bits.iterator(.{}) }; } pub const Iterator = struct { inner: BitSet.Iterator(.{}), |
next() |
pub fn next(self: *Iterator) ?Key { return if (self.inner.next()) |index| Indexer.keyForIndex(index) else null; } }; }; } |
Test:pure EnumSet fns |
test "pure EnumSet fns" { const Suit = enum { spades, hearts, clubs, diamonds }; const empty = EnumSet(Suit).initEmpty(); const full = EnumSet(Suit).initFull(); const black = EnumSet(Suit).initMany(&[_]Suit{ .spades, .clubs }); const red = EnumSet(Suit).initMany(&[_]Suit{ .hearts, .diamonds }); try testing.expect(empty.eql(empty)); try testing.expect(full.eql(full)); try testing.expect(!empty.eql(full)); try testing.expect(!full.eql(empty)); try testing.expect(!empty.eql(black)); try testing.expect(!full.eql(red)); try testing.expect(!red.eql(empty)); try testing.expect(!black.eql(full)); try testing.expect(empty.subsetOf(empty)); try testing.expect(empty.subsetOf(full)); try testing.expect(full.subsetOf(full)); try testing.expect(!black.subsetOf(red)); try testing.expect(!red.subsetOf(black)); try testing.expect(full.supersetOf(full)); try testing.expect(full.supersetOf(empty)); try testing.expect(empty.supersetOf(empty)); try testing.expect(!black.supersetOf(red)); try testing.expect(!red.supersetOf(black)); try testing.expect(empty.complement().eql(full)); try testing.expect(full.complement().eql(empty)); try testing.expect(black.complement().eql(red)); try testing.expect(red.complement().eql(black)); try testing.expect(empty.unionWith(empty).eql(empty)); try testing.expect(empty.unionWith(full).eql(full)); try testing.expect(full.unionWith(full).eql(full)); try testing.expect(full.unionWith(empty).eql(full)); try testing.expect(black.unionWith(red).eql(full)); try testing.expect(red.unionWith(black).eql(full)); try testing.expect(empty.intersectWith(empty).eql(empty)); try testing.expect(empty.intersectWith(full).eql(empty)); try testing.expect(full.intersectWith(full).eql(full)); try testing.expect(full.intersectWith(empty).eql(empty)); try testing.expect(black.intersectWith(red).eql(empty)); try testing.expect(red.intersectWith(black).eql(empty)); try testing.expect(empty.xorWith(empty).eql(empty)); try testing.expect(empty.xorWith(full).eql(full)); try testing.expect(full.xorWith(full).eql(empty)); try testing.expect(full.xorWith(empty).eql(full)); try testing.expect(black.xorWith(red).eql(full)); try testing.expect(red.xorWith(black).eql(full)); try testing.expect(empty.differenceWith(empty).eql(empty)); try testing.expect(empty.differenceWith(full).eql(empty)); try testing.expect(full.differenceWith(full).eql(empty)); try testing.expect(full.differenceWith(empty).eql(full)); try testing.expect(full.differenceWith(red).eql(black)); try testing.expect(full.differenceWith(black).eql(red)); } |
Test:std.enums.EnumSet empty |
test "std.enums.EnumSet empty" { const E = enum {}; const empty = EnumSet(E).initEmpty(); const full = EnumSet(E).initFull(); try std.testing.expect(empty.eql(full)); try std.testing.expect(empty.complement().eql(full)); try std.testing.expect(empty.complement().eql(full.complement())); try std.testing.expect(empty.eql(full.complement())); } |
Test:std.enums.EnumSet const iterator |
test "std.enums.EnumSet const iterator" { const Direction = enum { up, down, left, right }; const diag_move = init: { var move = EnumSet(Direction).initEmpty(); move.insert(.right); move.insert(.up); break :init move; }; var result = EnumSet(Direction).initEmpty(); var it = diag_move.iterator(); while (it.next()) |dir| { result.insert(dir); } try testing.expect(result.eql(diag_move)); } |
IndexedMap()A map from keys to values, using an index lookup. Uses a bitfield to track presence and a dense array of values. This type does no allocation and can be copied by value. |
pub fn IndexedMap(comptime I: type, comptime V: type, comptime Ext: ?fn (type) type) type { comptime ensureIndexer(I); return struct { const Self = @This(); pub usingnamespace (Ext orelse NoExtension)(Self); pub const Indexer = I; pub const Key = Indexer.Key; pub const Value = V; pub const len = Indexer.count; const BitSet = std.StaticBitSet(Indexer.count); bits: BitSet = BitSet.initEmpty(), values: [Indexer.count]Value = undefined, |
count()The index mapping for this map The key type used to index this map The value type stored in this map The number of possible keys in the map Bits determining whether items are in the map Values of items in the map. If the associated bit is zero, the value is undefined. The number of items in the map. |
pub fn count(self: Self) usize { return self.bits.count(); } |
contains()Checks if the map contains an item. |
pub fn contains(self: Self, key: Key) bool { return self.bits.isSet(Indexer.indexOf(key)); } |
get()Gets the value associated with a key. If the key is not in the map, returns null. |
pub fn get(self: Self, key: Key) ?Value { const index = Indexer.indexOf(key); return if (self.bits.isSet(index)) self.values[index] else null; } |
getAssertContains()Gets the value associated with a key, which must exist in the map. |
pub fn getAssertContains(self: Self, key: Key) Value { const index = Indexer.indexOf(key); assert(self.bits.isSet(index)); return self.values[index]; } |
getPtr()Gets the address of the value associated with a key. If the key is not in the map, returns null. |
pub fn getPtr(self: *Self, key: Key) ?*Value { const index = Indexer.indexOf(key); return if (self.bits.isSet(index)) &self.values[index] else null; } |
getPtrConst()Gets the address of the const value associated with a key. If the key is not in the map, returns null. |
pub fn getPtrConst(self: *const Self, key: Key) ?*const Value { const index = Indexer.indexOf(key); return if (self.bits.isSet(index)) &self.values[index] else null; } |
getPtrAssertContains()Gets the address of the value associated with a key. The key must be present in the map. |
pub fn getPtrAssertContains(self: *Self, key: Key) *Value { const index = Indexer.indexOf(key); assert(self.bits.isSet(index)); return &self.values[index]; } |
put()Adds the key to the map with the supplied value. If the key is already in the map, overwrites the value. |
pub fn put(self: *Self, key: Key, value: Value) void { const index = Indexer.indexOf(key); self.bits.set(index); self.values[index] = value; } |
putUninitialized()Adds the key to the map with an undefined value. If the key is already in the map, the value becomes undefined. A pointer to the value is returned, which should be used to initialize the value. |
pub fn putUninitialized(self: *Self, key: Key) *Value { const index = Indexer.indexOf(key); self.bits.set(index); self.values[index] = undefined; return &self.values[index]; } |
fetchPut()Sets the value associated with the key in the map, and returns the old value. If the key was not in the map, returns null. |
pub fn fetchPut(self: *Self, key: Key, value: Value) ?Value { const index = Indexer.indexOf(key); const result: ?Value = if (self.bits.isSet(index)) self.values[index] else null; self.bits.set(index); self.values[index] = value; return result; } |
remove()Removes a key from the map. If the key was not in the map, does nothing. |
pub fn remove(self: *Self, key: Key) void { const index = Indexer.indexOf(key); self.bits.unset(index); self.values[index] = undefined; } |
fetchRemove()Removes a key from the map, and returns the old value. If the key was not in the map, returns null. |
pub fn fetchRemove(self: *Self, key: Key) ?Value { const index = Indexer.indexOf(key); const result: ?Value = if (self.bits.isSet(index)) self.values[index] else null; self.bits.unset(index); self.values[index] = undefined; return result; } |
iterator()Returns an iterator over the map, which visits items in index order. Modifications to the underlying map may or may not be observed by the iterator, but will not invalidate it. |
pub fn iterator(self: *Self) Iterator { return .{ .inner = self.bits.iterator(.{}), .values = &self.values, }; } pub const Entry = struct { key: Key, value: *Value, }; pub const Iterator = struct { inner: BitSet.Iterator(.{}), values: *[Indexer.count]Value, |
next()An entry in the map. The key associated with this entry. Modifying this key will not change the map. A pointer to the value in the map associated with this key. Modifications through this pointer will modify the underlying data. |
pub fn next(self: *Iterator) ?Entry { return if (self.inner.next()) |index| Entry{ .key = Indexer.keyForIndex(index), .value = &self.values[index], } else null; } }; }; } |
IndexedArray()A dense array of values, using an indexed lookup. This type does no allocation and can be copied by value. |
pub fn IndexedArray(comptime I: type, comptime V: type, comptime Ext: ?fn (type) type) type { comptime ensureIndexer(I); return struct { const Self = @This(); pub usingnamespace (Ext orelse NoExtension)(Self); pub const Indexer = I; pub const Key = Indexer.Key; pub const Value = V; pub const len = Indexer.count; values: [Indexer.count]Value, |
initUndefined()The index mapping for this map The key type used to index this map The value type stored in this map The number of possible keys in the map |
pub fn initUndefined() Self { return Self{ .values = undefined }; } |
initFill() |
pub fn initFill(v: Value) Self { var self: Self = undefined; @memset(&self.values, v); return self; } |
get()Returns the value in the array associated with a key. |
pub fn get(self: Self, key: Key) Value { return self.values[Indexer.indexOf(key)]; } |
getPtr()Returns a pointer to the slot in the array associated with a key. |
pub fn getPtr(self: *Self, key: Key) *Value { return &self.values[Indexer.indexOf(key)]; } |
getPtrConst()Returns a const pointer to the slot in the array associated with a key. |
pub fn getPtrConst(self: *const Self, key: Key) *const Value { return &self.values[Indexer.indexOf(key)]; } |
set()Sets the value in the slot associated with a key. |
pub fn set(self: *Self, key: Key, value: Value) void { self.values[Indexer.indexOf(key)] = value; } |
iterator()Iterates over the items in the array, in index order. |
pub fn iterator(self: *Self) Iterator { return .{ .values = &self.values, }; } pub const Entry = struct { key: Key, value: *Value, }; pub const Iterator = struct { index: usize = 0, values: *[Indexer.count]Value, |
next()An entry in the array. The key associated with this entry. Modifying this key will not change the array. A pointer to the value in the array associated with this key. Modifications through this pointer will modify the underlying data. |
pub fn next(self: *Iterator) ?Entry { const index = self.index; if (index < Indexer.count) { self.index += 1; return Entry{ .key = Indexer.keyForIndex(index), .value = &self.values[index], }; } return null; } }; }; } |
ensureIndexer()Verifies that a type is a valid Indexer, providing a helpful compile error if not. An Indexer maps a comptime-known set of keys to a dense set of zero-based indices. The indexer interface must look like this: ``` struct { /// The key type which this indexer converts to indices pub const Key: type, /// The number of indexes in the dense mapping pub const count: usize, /// Converts from a key to an index pub fn indexOf(Key) usize; /// Converts from an index to a key pub fn keyForIndex(usize) Key; } ``` |
pub fn ensureIndexer(comptime T: type) void { comptime { if (!@hasDecl(T, "Key")) @compileError("Indexer must have decl Key: type."); if (@TypeOf(T.Key) != type) @compileError("Indexer.Key must be a type."); if (!@hasDecl(T, "count")) @compileError("Indexer must have decl count: usize."); if (@TypeOf(T.count) != usize) @compileError("Indexer.count must be a usize."); if (!@hasDecl(T, "indexOf")) @compileError("Indexer.indexOf must be a fn (Key) usize."); if (@TypeOf(T.indexOf) != fn (T.Key) usize) @compileError("Indexer must have decl indexOf: fn (Key) usize."); if (!@hasDecl(T, "keyForIndex")) @compileError("Indexer must have decl keyForIndex: fn (usize) Key."); if (@TypeOf(T.keyForIndex) != fn (usize) T.Key) @compileError("Indexer.keyForIndex must be a fn (usize) Key."); } } |
Test:std.enums.ensureIndexer |
test "std.enums.ensureIndexer" { ensureIndexer(struct { pub const Key = u32; pub const count: usize = 8; |
indexOf() |
pub fn indexOf(k: Key) usize { return @as(usize, @intCast(k)); } |
keyForIndex() |
pub fn keyForIndex(index: usize) Key { return @as(Key, @intCast(index)); } }); } |
EnumIndexer() |
pub fn EnumIndexer(comptime E: type) type { if (!@typeInfo(E).Enum.is_exhaustive) { @compileError("Cannot create an enum indexer for a non-exhaustive enum."); } const const_fields = std.meta.fields(E); var fields = const_fields[0..const_fields.len].*; const fields_len = fields.len; if (fields_len == 0) { return struct { pub const Key = E; pub const count: usize = 0; |
indexOf() |
pub fn indexOf(e: E) usize { _ = e; unreachable; } |
keyForIndex() |
pub fn keyForIndex(i: usize) E { _ = i; unreachable; } }; } const min = fields[0].value; const max = fields[fields.len - 1].value; const SortContext = struct { fields: []EnumField, |
lessThan() |
pub fn lessThan(comptime ctx: @This(), comptime a: usize, comptime b: usize) bool { return ctx.fields[a].value < ctx.fields[b].value; } |
swap() |
pub fn swap(comptime ctx: @This(), comptime a: usize, comptime b: usize) void { return std.mem.swap(EnumField, &ctx.fields[a], &ctx.fields[b]); } }; std.sort.insertionContext(0, fields_len, SortContext{ .fields = &fields }); if (max - min == fields.len - 1) { return struct { pub const Key = E; pub const count = fields_len; |
indexOf() |
pub fn indexOf(e: E) usize { return @as(usize, @intCast(@intFromEnum(e) - min)); } |
keyForIndex() |
pub fn keyForIndex(i: usize) E { // TODO fix addition semantics. This calculation // gives up some safety to avoid artificially limiting // the range of signed enum values to max_isize. const enum_value = if (min < 0) @as(isize, @bitCast(i)) +% min else i + min; return @as(E, @enumFromInt(@as(std.meta.Tag(E), @intCast(enum_value)))); } }; } const keys = valuesFromFields(E, &fields); return struct { pub const Key = E; pub const count = fields_len; |
indexOf() |
pub fn indexOf(e: E) usize { for (keys, 0..) |k, i| { if (k == e) return i; } unreachable; } |
keyForIndex() |
pub fn keyForIndex(i: usize) E { return keys[i]; } }; } |
Test:std.enums.EnumIndexer dense zeroed |
test "std.enums.EnumIndexer dense zeroed" { const E = enum(u2) { b = 1, a = 0, c = 2 }; const Indexer = EnumIndexer(E); ensureIndexer(Indexer); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(@as(usize, 3), Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } |
Test:std.enums.EnumIndexer dense positive |
test "std.enums.EnumIndexer dense positive" { const E = enum(u4) { c = 6, a = 4, b = 5 }; const Indexer = EnumIndexer(E); ensureIndexer(Indexer); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(@as(usize, 3), Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } |
Test:std.enums.EnumIndexer dense negative |
test "std.enums.EnumIndexer dense negative" { const E = enum(i4) { a = -6, c = -4, b = -5 }; const Indexer = EnumIndexer(E); ensureIndexer(Indexer); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(@as(usize, 3), Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } |
Test:std.enums.EnumIndexer sparse |
test "std.enums.EnumIndexer sparse" { const E = enum(i4) { a = -2, c = 6, b = 4 }; const Indexer = EnumIndexer(E); ensureIndexer(Indexer); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(@as(usize, 3), Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } |
Test:std.enums.EnumIndexer empty |
test "std.enums.EnumIndexer empty" { const E = enum {}; const Indexer = EnumIndexer(E); ensureIndexer(Indexer); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(@as(usize, 0), Indexer.count); } |
Generated by zstd-browse2 on 2023-11-04 14:12:20 -0400. |