|
const std = @import("std.zig"); const builtin = @import("builtin"); const root = @import("root"); const os = std.os; const mem = std.mem; const base64 = std.base64; const crypto = std.crypto; const Allocator = std.mem.Allocator; const assert = std.debug.assert; const math = std.math; const is_darwin = builtin.os.tag.isDarwin(); |
has_executable_bit |
pub const has_executable_bit = switch (builtin.os.tag) { .windows, .wasi => false, else => true, }; |
pathfs/path.zig |
pub const path = @import("fs/path.zig"); |
Filefs/file.zig |
pub const File = @import("fs/file.zig").File; |
wasifs/wasi.zig |
pub const wasi = @import("fs/wasi.zig"); // TODO audit these APIs with respect to Dir and absolute paths |
realpath |
pub const realpath = os.realpath; |
realpathZ |
pub const realpathZ = os.realpathZ; |
realpathW |
pub const realpathW = os.realpathW; |
getAppDataDirfs/get_app_data_dir.zig |
pub const getAppDataDir = @import("fs/get_app_data_dir.zig").getAppDataDir; |
GetAppDataDirErrorfs/get_app_data_dir.zig |
pub const GetAppDataDirError = @import("fs/get_app_data_dir.zig").GetAppDataDirError; |
Watchfs/watch.zig |
pub const Watch = @import("fs/watch.zig").Watch; |
MAX_PATH_BYTESThis represents the maximum size of a UTF-8 encoded file path that the operating system will accept. Paths, including those returned from file system operations, may be longer than this length, but such paths cannot be successfully passed back in other file system operations. However, all path components returned by file system operations are assumed to fit into a UTF-8 encoded array of this length. The byte count includes room for a null sentinel byte. |
pub const MAX_PATH_BYTES = switch (builtin.os.tag) { .linux, .macos, .ios, .freebsd, .openbsd, .netbsd, .dragonfly, .haiku, .solaris, .illumos, .plan9 => os.PATH_MAX, // Each UTF-16LE character may be expanded to 3 UTF-8 bytes. // If it would require 4 UTF-8 bytes, then there would be a surrogate // pair in the UTF-16LE, and we (over)account 3 bytes for it that way. // +1 for the null byte at the end, which can be encoded in 1 byte. .windows => os.windows.PATH_MAX_WIDE * 3 + 1, // TODO work out what a reasonable value we should use here .wasi => 4096, else => if (@hasDecl(root, "os") and @hasDecl(root.os, "PATH_MAX")) root.os.PATH_MAX else @compileError("PATH_MAX not implemented for " ++ @tagName(builtin.os.tag)), }; |
MAX_NAME_BYTESThis represents the maximum size of a UTF-8 encoded file name component that the platform's common file systems support. File name components returned by file system operations are likely to fit into a UTF-8 encoded array of this length, but (depending on the platform) this assumption may not hold for every configuration. The byte count does not include a null sentinel byte. |
pub const MAX_NAME_BYTES = switch (builtin.os.tag) { .linux, .macos, .ios, .freebsd, .openbsd, .netbsd, .dragonfly, .solaris, .illumos => os.NAME_MAX, // Haiku's NAME_MAX includes the null terminator, so subtract one. .haiku => os.NAME_MAX - 1, // Each UTF-16LE character may be expanded to 3 UTF-8 bytes. // If it would require 4 UTF-8 bytes, then there would be a surrogate // pair in the UTF-16LE, and we (over)account 3 bytes for it that way. .windows => os.windows.NAME_MAX * 3, // For WASI, the MAX_NAME will depend on the host OS, so it needs to be // as large as the largest MAX_NAME_BYTES (Windows) in order to work on any host OS. // TODO determine if this is a reasonable approach .wasi => os.windows.NAME_MAX * 3, else => if (@hasDecl(root, "os") and @hasDecl(root.os, "NAME_MAX")) root.os.NAME_MAX else @compileError("NAME_MAX not implemented for " ++ @tagName(builtin.os.tag)), }; |
base64_alphabet |
pub const base64_alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_".*; |
base64_encoder Base64 encoder, replacing the standard |
pub const base64_encoder = base64.Base64Encoder.init(base64_alphabet, null); |
base64_decoder Base64 decoder, replacing the standard |
pub const base64_decoder = base64.Base64Decoder.init(base64_alphabet, null); |
need_async_threadWhether or not async file system syscalls need a dedicated thread because the operating system does not support non-blocking I/O on the file system. |
pub const need_async_thread = std.io.is_async and switch (builtin.os.tag) { .windows, .other => false, else => true, }; |
atomicSymLink()TODO remove the allocator requirement from this API |
pub fn atomicSymLink(allocator: Allocator, existing_path: []const u8, new_path: []const u8) !void { if (cwd().symLink(existing_path, new_path, .{})) { return; } else |err| switch (err) { error.PathAlreadyExists => {}, else => return err, // TODO zig should know this set does not include PathAlreadyExists } const dirname = path.dirname(new_path) orelse "."; var rand_buf: [AtomicFile.RANDOM_BYTES]u8 = undefined; const tmp_path = try allocator.alloc(u8, dirname.len + 1 + base64_encoder.calcSize(rand_buf.len)); defer allocator.free(tmp_path); @memcpy(tmp_path[0..dirname.len], dirname); tmp_path[dirname.len] = path.sep; while (true) { crypto.random.bytes(rand_buf[0..]); _ = base64_encoder.encode(tmp_path[dirname.len + 1 ..], &rand_buf); if (cwd().symLink(existing_path, tmp_path, .{})) { return cwd().rename(tmp_path, new_path); } else |err| switch (err) { error.PathAlreadyExists => continue, else => return err, // TODO zig should know this set does not include PathAlreadyExists } } } |
PrevStatus |
pub const PrevStatus = enum { stale, fresh, }; |
CopyFileOptions |
pub const CopyFileOptions = struct { override_mode: ?File.Mode = null, }; |
updateFileAbsolute() When this is |
pub fn updateFileAbsolute( source_path: []const u8, dest_path: []const u8, args: CopyFileOptions, ) !PrevStatus { assert(path.isAbsolute(source_path)); assert(path.isAbsolute(dest_path)); const my_cwd = cwd(); return Dir.updateFile(my_cwd, source_path, my_cwd, dest_path, args); } |
copyFileAbsolute() Same as |
pub fn copyFileAbsolute(source_path: []const u8, dest_path: []const u8, args: CopyFileOptions) !void { assert(path.isAbsolute(source_path)); assert(path.isAbsolute(dest_path)); const my_cwd = cwd(); return Dir.copyFile(my_cwd, source_path, my_cwd, dest_path, args); } |
AtomicFile |
pub const AtomicFile = struct { file: File, // TODO either replace this with rand_buf or use []u16 on Windows tmp_path_buf: [TMP_PATH_LEN:0]u8, dest_basename: []const u8, file_open: bool, file_exists: bool, close_dir_on_deinit: bool, dir: Dir, const InitError = File.OpenError; const RANDOM_BYTES = 12; const TMP_PATH_LEN = base64_encoder.calcSize(RANDOM_BYTES); |
init() Note that the |
pub fn init( dest_basename: []const u8, mode: File.Mode, dir: Dir, close_dir_on_deinit: bool, ) InitError!AtomicFile { var rand_buf: [RANDOM_BYTES]u8 = undefined; var tmp_path_buf: [TMP_PATH_LEN:0]u8 = undefined; while (true) { crypto.random.bytes(rand_buf[0..]); const tmp_path = base64_encoder.encode(&tmp_path_buf, &rand_buf); tmp_path_buf[tmp_path.len] = 0; const file = dir.createFile( tmp_path, .{ .mode = mode, .exclusive = true }, ) catch |err| switch (err) { error.PathAlreadyExists => continue, else => |e| return e, }; return AtomicFile{ .file = file, .tmp_path_buf = tmp_path_buf, .dest_basename = dest_basename, .file_open = true, .file_exists = true, .close_dir_on_deinit = close_dir_on_deinit, .dir = dir, }; } } |
deinit()Always call deinit, even after a successful finish(). |
pub fn deinit(self: *AtomicFile) void { if (self.file_open) { self.file.close(); self.file_open = false; } if (self.file_exists) { self.dir.deleteFile(&self.tmp_path_buf) catch {}; self.file_exists = false; } if (self.close_dir_on_deinit) { self.dir.close(); } self.* = undefined; } pub const FinishError = std.os.RenameError; |
finish() |
pub fn finish(self: *AtomicFile) FinishError!void { assert(self.file_exists); if (self.file_open) { self.file.close(); self.file_open = false; } try os.renameat(self.dir.fd, self.tmp_path_buf[0..], self.dir.fd, self.dest_basename); self.file_exists = false; } }; const default_new_dir_mode = 0o755; |
makeDirAbsolute() Create a new directory, based on an absolute path. Asserts that the path is absolute. See |
pub fn makeDirAbsolute(absolute_path: []const u8) !void { assert(path.isAbsolute(absolute_path)); return os.mkdir(absolute_path, default_new_dir_mode); } |
makeDirAbsoluteZ() Same as |
pub fn makeDirAbsoluteZ(absolute_path_z: [*:0]const u8) !void { assert(path.isAbsoluteZ(absolute_path_z)); return os.mkdirZ(absolute_path_z, default_new_dir_mode); } |
makeDirAbsoluteW() Same as |
pub fn makeDirAbsoluteW(absolute_path_w: [*:0]const u16) !void { assert(path.isAbsoluteWindowsW(absolute_path_w)); return os.mkdirW(absolute_path_w, default_new_dir_mode); } |
deleteDirAbsolute() Same as |
pub fn deleteDirAbsolute(dir_path: []const u8) !void { assert(path.isAbsolute(dir_path)); return os.rmdir(dir_path); } |
deleteDirAbsoluteZ() Same as |
pub fn deleteDirAbsoluteZ(dir_path: [*:0]const u8) !void { assert(path.isAbsoluteZ(dir_path)); return os.rmdirZ(dir_path); } |
deleteDirAbsoluteW() Same as |
pub fn deleteDirAbsoluteW(dir_path: [*:0]const u16) !void { assert(path.isAbsoluteWindowsW(dir_path)); return os.rmdirW(dir_path); } |
renameAbsolute() Same as |
pub fn renameAbsolute(old_path: []const u8, new_path: []const u8) !void { assert(path.isAbsolute(old_path)); assert(path.isAbsolute(new_path)); return os.rename(old_path, new_path); } |
renameAbsoluteZ() Same as |
pub fn renameAbsoluteZ(old_path: [*:0]const u8, new_path: [*:0]const u8) !void { assert(path.isAbsoluteZ(old_path)); assert(path.isAbsoluteZ(new_path)); return os.renameZ(old_path, new_path); } |
renameAbsoluteW() Same as |
pub fn renameAbsoluteW(old_path: [*:0]const u16, new_path: [*:0]const u16) !void { assert(path.isAbsoluteWindowsW(old_path)); assert(path.isAbsoluteWindowsW(new_path)); return os.renameW(old_path, new_path); } |
rename() Same as |
pub fn rename(old_dir: Dir, old_sub_path: []const u8, new_dir: Dir, new_sub_path: []const u8) !void { return os.renameat(old_dir.fd, old_sub_path, new_dir.fd, new_sub_path); } |
renameZ() Same as |
pub fn renameZ(old_dir: Dir, old_sub_path_z: [*:0]const u8, new_dir: Dir, new_sub_path_z: [*:0]const u8) !void { return os.renameatZ(old_dir.fd, old_sub_path_z, new_dir.fd, new_sub_path_z); } |
renameW() Same as |
pub fn renameW(old_dir: Dir, old_sub_path_w: []const u16, new_dir: Dir, new_sub_path_w: []const u16) !void { return os.renameatW(old_dir.fd, old_sub_path_w, new_dir.fd, new_sub_path_w); } |
IterableDir A directory that can be iterated. It is *NOT* legal to initialize this with a regular |
pub const IterableDir = struct { dir: Dir, pub const Entry = struct { name: []const u8, kind: Kind, pub const Kind = File.Kind; }; const IteratorError = error{ AccessDenied, SystemResources } || os.UnexpectedError; pub const Iterator = switch (builtin.os.tag) { .macos, .ios, .freebsd, .netbsd, .dragonfly, .openbsd, .solaris, .illumos => struct { dir: Dir, seek: i64, buf: [1024]u8, // TODO align(@alignOf(os.system.dirent)), index: usize, end_index: usize, first_iter: bool, const Self = @This(); pub const Error = IteratorError; |
next() Memory such as file names referenced in this returned entry becomes invalid with subsequent calls to |
pub fn next(self: *Self) Error!?Entry { switch (builtin.os.tag) { .macos, .ios => return self.nextDarwin(), .freebsd, .netbsd, .dragonfly, .openbsd => return self.nextBsd(), .solaris, .illumos => return self.nextSolaris(), else => @compileError("unimplemented"), } } fn nextDarwin(self: *Self) !?Entry { start_over: while (true) { if (self.index >= self.end_index) { if (self.first_iter) { std.os.lseek_SET(self.dir.fd, 0) catch unreachable; // EBADF here likely means that the Dir was not opened with iteration permissions self.first_iter = false; } const rc = os.system.__getdirentries64( self.dir.fd, &self.buf, self.buf.len, &self.seek, ); if (rc == 0) return null; if (rc < 0) { switch (os.errno(rc)) { .BADF => unreachable, // Dir is invalid or was opened without iteration ability .FAULT => unreachable, .NOTDIR => unreachable, .INVAL => unreachable, else => |err| return os.unexpectedErrno(err), } } self.index = 0; self.end_index = @as(usize, @intCast(rc)); } const darwin_entry = @as(*align(1) os.system.dirent, @ptrCast(&self.buf[self.index])); const next_index = self.index + darwin_entry.reclen(); self.index = next_index; const name = @as([*]u8, @ptrCast(&darwin_entry.d_name))[0..darwin_entry.d_namlen]; if (mem.eql(u8, name, ".") or mem.eql(u8, name, "..") or (darwin_entry.d_ino == 0)) { continue :start_over; } const entry_kind: Entry.Kind = switch (darwin_entry.d_type) { os.DT.BLK => .block_device, os.DT.CHR => .character_device, os.DT.DIR => .directory, os.DT.FIFO => .named_pipe, os.DT.LNK => .sym_link, os.DT.REG => .file, os.DT.SOCK => .unix_domain_socket, os.DT.WHT => .whiteout, else => .unknown, }; return Entry{ .name = name, .kind = entry_kind, }; } } fn nextSolaris(self: *Self) !?Entry { start_over: while (true) { if (self.index >= self.end_index) { if (self.first_iter) { std.os.lseek_SET(self.dir.fd, 0) catch unreachable; // EBADF here likely means that the Dir was not opened with iteration permissions self.first_iter = false; } const rc = os.system.getdents(self.dir.fd, &self.buf, self.buf.len); switch (os.errno(rc)) { .SUCCESS => {}, .BADF => unreachable, // Dir is invalid or was opened without iteration ability .FAULT => unreachable, .NOTDIR => unreachable, .INVAL => unreachable, else => |err| return os.unexpectedErrno(err), } if (rc == 0) return null; self.index = 0; self.end_index = @as(usize, @intCast(rc)); } const entry = @as(*align(1) os.system.dirent, @ptrCast(&self.buf[self.index])); const next_index = self.index + entry.reclen(); self.index = next_index; const name = mem.sliceTo(@as([*:0]u8, @ptrCast(&entry.d_name)), 0); if (mem.eql(u8, name, ".") or mem.eql(u8, name, "..")) continue :start_over; // Solaris dirent doesn't expose d_type, so we have to call stat to get it. const stat_info = os.fstatat( self.dir.fd, name, os.AT.SYMLINK_NOFOLLOW, ) catch |err| switch (err) { error.NameTooLong => unreachable, error.SymLinkLoop => unreachable, error.FileNotFound => unreachable, // lost the race else => |e| return e, }; const entry_kind: Entry.Kind = switch (stat_info.mode & os.S.IFMT) { os.S.IFIFO => .named_pipe, os.S.IFCHR => .character_device, os.S.IFDIR => .directory, os.S.IFBLK => .block_device, os.S.IFREG => .file, os.S.IFLNK => .sym_link, os.S.IFSOCK => .unix_domain_socket, os.S.IFDOOR => .door, os.S.IFPORT => .event_port, else => .unknown, }; return Entry{ .name = name, .kind = entry_kind, }; } } fn nextBsd(self: *Self) !?Entry { start_over: while (true) { if (self.index >= self.end_index) { if (self.first_iter) { std.os.lseek_SET(self.dir.fd, 0) catch unreachable; // EBADF here likely means that the Dir was not opened with iteration permissions self.first_iter = false; } const rc = if (builtin.os.tag == .netbsd) os.system.__getdents30(self.dir.fd, &self.buf, self.buf.len) else os.system.getdents(self.dir.fd, &self.buf, self.buf.len); switch (os.errno(rc)) { .SUCCESS => {}, .BADF => unreachable, // Dir is invalid or was opened without iteration ability .FAULT => unreachable, .NOTDIR => unreachable, .INVAL => unreachable, // Introduced in freebsd 13.2: directory unlinked but still open. // To be consistent, iteration ends if the directory being iterated is deleted during iteration. .NOENT => return null, else => |err| return os.unexpectedErrno(err), } if (rc == 0) return null; self.index = 0; self.end_index = @as(usize, @intCast(rc)); } const bsd_entry = @as(*align(1) os.system.dirent, @ptrCast(&self.buf[self.index])); const next_index = self.index + bsd_entry.reclen(); self.index = next_index; const name = @as([*]u8, @ptrCast(&bsd_entry.d_name))[0..bsd_entry.d_namlen]; const skip_zero_fileno = switch (builtin.os.tag) { // d_fileno=0 is used to mark invalid entries or deleted files. .openbsd, .netbsd => true, else => false, }; if (mem.eql(u8, name, ".") or mem.eql(u8, name, "..") or (skip_zero_fileno and bsd_entry.d_fileno == 0)) { continue :start_over; } const entry_kind: Entry.Kind = switch (bsd_entry.d_type) { os.DT.BLK => .block_device, os.DT.CHR => .character_device, os.DT.DIR => .directory, os.DT.FIFO => .named_pipe, os.DT.LNK => .sym_link, os.DT.REG => .file, os.DT.SOCK => .unix_domain_socket, os.DT.WHT => .whiteout, else => .unknown, }; return Entry{ .name = name, .kind = entry_kind, }; } } |
reset() |
pub fn reset(self: *Self) void { self.index = 0; self.end_index = 0; self.first_iter = true; } }, .haiku => struct { dir: Dir, buf: [1024]u8, // TODO align(@alignOf(os.dirent64)), index: usize, end_index: usize, first_iter: bool, const Self = @This(); pub const Error = IteratorError; |
next() Memory such as file names referenced in this returned entry becomes invalid with subsequent calls to |
pub fn next(self: *Self) Error!?Entry { start_over: while (true) { // TODO: find a better max const HAIKU_MAX_COUNT = 10000; if (self.index >= self.end_index) { if (self.first_iter) { std.os.lseek_SET(self.dir.fd, 0) catch unreachable; // EBADF here likely means that the Dir was not opened with iteration permissions self.first_iter = false; } const rc = os.system._kern_read_dir( self.dir.fd, &self.buf, self.buf.len, HAIKU_MAX_COUNT, ); if (rc == 0) return null; if (rc < 0) { switch (os.errno(rc)) { .BADF => unreachable, // Dir is invalid or was opened without iteration ability .FAULT => unreachable, .NOTDIR => unreachable, .INVAL => unreachable, else => |err| return os.unexpectedErrno(err), } } self.index = 0; self.end_index = @as(usize, @intCast(rc)); } const haiku_entry = @as(*align(1) os.system.dirent, @ptrCast(&self.buf[self.index])); const next_index = self.index + haiku_entry.reclen(); self.index = next_index; const name = mem.sliceTo(@as([*:0]u8, @ptrCast(&haiku_entry.d_name)), 0); if (mem.eql(u8, name, ".") or mem.eql(u8, name, "..") or (haiku_entry.d_ino == 0)) { continue :start_over; } var stat_info: os.Stat = undefined; const rc = os.system._kern_read_stat( self.dir.fd, &haiku_entry.d_name, false, &stat_info, 0, ); if (rc != 0) { switch (os.errno(rc)) { .SUCCESS => {}, .BADF => unreachable, // Dir is invalid or was opened without iteration ability .FAULT => unreachable, .NOTDIR => unreachable, .INVAL => unreachable, else => |err| return os.unexpectedErrno(err), } } const statmode = stat_info.mode & os.S.IFMT; const entry_kind: Entry.Kind = switch (statmode) { os.S.IFDIR => .directory, os.S.IFBLK => .block_device, os.S.IFCHR => .character_device, os.S.IFLNK => .sym_link, os.S.IFREG => .file, os.S.IFIFO => .named_pipe, else => .unknown, }; return Entry{ .name = name, .kind = entry_kind, }; } } |
reset() |
pub fn reset(self: *Self) void { self.index = 0; self.end_index = 0; self.first_iter = true; } }, .linux => struct { dir: Dir, // The if guard is solely there to prevent compile errors from missing `linux.dirent64` // definition when compiling for other OSes. It doesn't do anything when compiling for Linux. buf: [1024]u8 align(if (builtin.os.tag != .linux) 1 else @alignOf(linux.dirent64)), index: usize, end_index: usize, first_iter: bool, const Self = @This(); const linux = os.linux; pub const Error = IteratorError; |
next() Memory such as file names referenced in this returned entry becomes invalid with subsequent calls to |
pub fn next(self: *Self) Error!?Entry { return self.nextLinux() catch |err| switch (err) { // To be consistent across platforms, iteration ends if the directory being iterated is deleted during iteration. // This matches the behavior of non-Linux UNIX platforms. error.DirNotFound => null, else => |e| return e, }; } pub const ErrorLinux = error{DirNotFound} || IteratorError; |
nextLinux() Implementation of |
pub fn nextLinux(self: *Self) ErrorLinux!?Entry { start_over: while (true) { if (self.index >= self.end_index) { if (self.first_iter) { std.os.lseek_SET(self.dir.fd, 0) catch unreachable; // EBADF here likely means that the Dir was not opened with iteration permissions self.first_iter = false; } const rc = linux.getdents64(self.dir.fd, &self.buf, self.buf.len); switch (linux.getErrno(rc)) { .SUCCESS => {}, .BADF => unreachable, // Dir is invalid or was opened without iteration ability .FAULT => unreachable, .NOTDIR => unreachable, .NOENT => return error.DirNotFound, // The directory being iterated was deleted during iteration. .INVAL => return error.Unexpected, // Linux may in some cases return EINVAL when reading /proc/$PID/net. .ACCES => return error.AccessDenied, // Do not have permission to iterate this directory. else => |err| return os.unexpectedErrno(err), } if (rc == 0) return null; self.index = 0; self.end_index = rc; } const linux_entry = @as(*align(1) linux.dirent64, @ptrCast(&self.buf[self.index])); const next_index = self.index + linux_entry.reclen(); self.index = next_index; const name = mem.sliceTo(@as([*:0]u8, @ptrCast(&linux_entry.d_name)), 0); // skip . and .. entries if (mem.eql(u8, name, ".") or mem.eql(u8, name, "..")) { continue :start_over; } const entry_kind: Entry.Kind = switch (linux_entry.d_type) { linux.DT.BLK => .block_device, linux.DT.CHR => .character_device, linux.DT.DIR => .directory, linux.DT.FIFO => .named_pipe, linux.DT.LNK => .sym_link, linux.DT.REG => .file, linux.DT.SOCK => .unix_domain_socket, else => .unknown, }; return Entry{ .name = name, .kind = entry_kind, }; } } |
reset() |
pub fn reset(self: *Self) void { self.index = 0; self.end_index = 0; self.first_iter = true; } }, .windows => struct { dir: Dir, buf: [1024]u8 align(@alignOf(os.windows.FILE_BOTH_DIR_INFORMATION)), index: usize, end_index: usize, first_iter: bool, name_data: [MAX_NAME_BYTES]u8, const Self = @This(); pub const Error = IteratorError; |
next() Memory such as file names referenced in this returned entry becomes invalid with subsequent calls to |
pub fn next(self: *Self) Error!?Entry { while (true) { const w = os.windows; if (self.index >= self.end_index) { var io: w.IO_STATUS_BLOCK = undefined; const rc = w.ntdll.NtQueryDirectoryFile( self.dir.fd, null, null, null, &io, &self.buf, self.buf.len, .FileBothDirectoryInformation, w.FALSE, null, if (self.first_iter) @as(w.BOOLEAN, w.TRUE) else @as(w.BOOLEAN, w.FALSE), ); self.first_iter = false; if (io.Information == 0) return null; self.index = 0; self.end_index = io.Information; switch (rc) { .SUCCESS => {}, .ACCESS_DENIED => return error.AccessDenied, // Double-check that the Dir was opened with iteration ability else => return w.unexpectedStatus(rc), } } const dir_info: *w.FILE_BOTH_DIR_INFORMATION = @ptrCast(@alignCast(&self.buf[self.index])); if (dir_info.NextEntryOffset != 0) { self.index += dir_info.NextEntryOffset; } else { self.index = self.buf.len; } const name_utf16le = @as([*]u16, @ptrCast(&dir_info.FileName))[0 .. dir_info.FileNameLength / 2]; if (mem.eql(u16, name_utf16le, &[_]u16{'.'}) or mem.eql(u16, name_utf16le, &[_]u16{ '.', '.' })) continue; // Trust that Windows gives us valid UTF-16LE const name_utf8_len = std.unicode.utf16leToUtf8(self.name_data[0..], name_utf16le) catch unreachable; const name_utf8 = self.name_data[0..name_utf8_len]; const kind: Entry.Kind = blk: { const attrs = dir_info.FileAttributes; if (attrs & w.FILE_ATTRIBUTE_DIRECTORY != 0) break :blk .directory; if (attrs & w.FILE_ATTRIBUTE_REPARSE_POINT != 0) break :blk .sym_link; break :blk .file; }; return Entry{ .name = name_utf8, .kind = kind, }; } } |
reset() |
pub fn reset(self: *Self) void { self.index = 0; self.end_index = 0; self.first_iter = true; } }, .wasi => struct { dir: Dir, buf: [1024]u8, // TODO align(@alignOf(os.wasi.dirent_t)), cookie: u64, index: usize, end_index: usize, const Self = @This(); pub const Error = IteratorError; |
next() Memory such as file names referenced in this returned entry becomes invalid with subsequent calls to |
pub fn next(self: *Self) Error!?Entry { return self.nextWasi() catch |err| switch (err) { // To be consistent across platforms, iteration ends if the directory being iterated is deleted during iteration. // This matches the behavior of non-Linux UNIX platforms. error.DirNotFound => null, else => |e| return e, }; } pub const ErrorWasi = error{DirNotFound} || IteratorError; |
nextWasi() Implementation of |
pub fn nextWasi(self: *Self) ErrorWasi!?Entry { // We intentinally use fd_readdir even when linked with libc, // since its implementation is exactly the same as below, // and we avoid the code complexity here. const w = os.wasi; start_over: while (true) { // According to the WASI spec, the last entry might be truncated, // so we need to check if the left buffer contains the whole dirent. if (self.end_index - self.index < @sizeOf(w.dirent_t)) { var bufused: usize = undefined; switch (w.fd_readdir(self.dir.fd, &self.buf, self.buf.len, self.cookie, &bufused)) { .SUCCESS => {}, .BADF => unreachable, // Dir is invalid or was opened without iteration ability .FAULT => unreachable, .NOTDIR => unreachable, .INVAL => unreachable, .NOENT => return error.DirNotFound, // The directory being iterated was deleted during iteration. .NOTCAPABLE => return error.AccessDenied, else => |err| return os.unexpectedErrno(err), } if (bufused == 0) return null; self.index = 0; self.end_index = bufused; } const entry = @as(*align(1) w.dirent_t, @ptrCast(&self.buf[self.index])); const entry_size = @sizeOf(w.dirent_t); const name_index = self.index + entry_size; if (name_index + entry.d_namlen > self.end_index) { // This case, the name is truncated, so we need to call readdir to store the entire name. self.end_index = self.index; // Force fd_readdir in the next loop. continue :start_over; } const name = self.buf[name_index .. name_index + entry.d_namlen]; const next_index = name_index + entry.d_namlen; self.index = next_index; self.cookie = entry.d_next; // skip . and .. entries if (mem.eql(u8, name, ".") or mem.eql(u8, name, "..")) { continue :start_over; } const entry_kind: Entry.Kind = switch (entry.d_type) { .BLOCK_DEVICE => .block_device, .CHARACTER_DEVICE => .character_device, .DIRECTORY => .directory, .SYMBOLIC_LINK => .sym_link, .REGULAR_FILE => .file, .SOCKET_STREAM, .SOCKET_DGRAM => .unix_domain_socket, else => .unknown, }; return Entry{ .name = name, .kind = entry_kind, }; } } |
reset() |
pub fn reset(self: *Self) void { self.index = 0; self.end_index = 0; self.cookie = os.wasi.DIRCOOKIE_START; } }, else => @compileError("unimplemented"), }; |
iterate() |
pub fn iterate(self: IterableDir) Iterator { return self.iterateImpl(true); } |
iterateAssumeFirstIteration() Like |
pub fn iterateAssumeFirstIteration(self: IterableDir) Iterator { return self.iterateImpl(false); } fn iterateImpl(self: IterableDir, first_iter_start_value: bool) Iterator { switch (builtin.os.tag) { .macos, .ios, .freebsd, .netbsd, .dragonfly, .openbsd, .solaris, .illumos, => return Iterator{ .dir = self.dir, .seek = 0, .index = 0, .end_index = 0, .buf = undefined, .first_iter = first_iter_start_value, }, .linux, .haiku => return Iterator{ .dir = self.dir, .index = 0, .end_index = 0, .buf = undefined, .first_iter = first_iter_start_value, }, .windows => return Iterator{ .dir = self.dir, .index = 0, .end_index = 0, .first_iter = first_iter_start_value, .buf = undefined, .name_data = undefined, }, .wasi => return Iterator{ .dir = self.dir, .cookie = os.wasi.DIRCOOKIE_START, .index = 0, .end_index = 0, .buf = undefined, }, else => @compileError("unimplemented"), } } pub const Walker = struct { stack: std.ArrayList(StackItem), name_buffer: std.ArrayList(u8), pub const WalkerEntry = struct { dir: Dir, basename: []const u8, path: []const u8, kind: IterableDir.Entry.Kind, }; const StackItem = struct { iter: IterableDir.Iterator, dirname_len: usize, }; |
next() The containing directory. This can be used to operate directly on |
pub fn next(self: *Walker) !?WalkerEntry { while (self.stack.items.len != 0) { // `top` and `containing` become invalid after appending to `self.stack` var top = &self.stack.items[self.stack.items.len - 1]; var containing = top; var dirname_len = top.dirname_len; if (top.iter.next() catch |err| { // If we get an error, then we want the user to be able to continue // walking if they want, which means that we need to pop the directory // that errored from the stack. Otherwise, all future `next` calls would // likely just fail with the same error. var item = self.stack.pop(); if (self.stack.items.len != 0) { item.iter.dir.close(); } return err; }) |base| { self.name_buffer.shrinkRetainingCapacity(dirname_len); if (self.name_buffer.items.len != 0) { try self.name_buffer.append(path.sep); dirname_len += 1; } try self.name_buffer.appendSlice(base.name); if (base.kind == .directory) { var new_dir = top.iter.dir.openIterableDir(base.name, .{}) catch |err| switch (err) { error.NameTooLong => unreachable, // no path sep in base.name else => |e| return e, }; { errdefer new_dir.close(); try self.stack.append(StackItem{ .iter = new_dir.iterateAssumeFirstIteration(), .dirname_len = self.name_buffer.items.len, }); top = &self.stack.items[self.stack.items.len - 1]; containing = &self.stack.items[self.stack.items.len - 2]; } } return WalkerEntry{ .dir = containing.iter.dir, .basename = self.name_buffer.items[dirname_len..], .path = self.name_buffer.items, .kind = base.kind, }; } else { var item = self.stack.pop(); if (self.stack.items.len != 0) { item.iter.dir.close(); } } } return null; } |
deinit() |
pub fn deinit(self: *Walker) void { // Close any remaining directories except the initial one (which is always at index 0) if (self.stack.items.len > 1) { for (self.stack.items[1..]) |*item| { item.iter.dir.close(); } } self.stack.deinit(); self.name_buffer.deinit(); } }; |
walk() Recursively iterates over a directory. Must call |
pub fn walk(self: IterableDir, allocator: Allocator) !Walker { var name_buffer = std.ArrayList(u8).init(allocator); errdefer name_buffer.deinit(); var stack = std.ArrayList(Walker.StackItem).init(allocator); errdefer stack.deinit(); try stack.append(Walker.StackItem{ .iter = self.iterate(), .dirname_len = 0, }); return Walker{ .stack = stack, .name_buffer = name_buffer, }; } |
close() |
pub fn close(self: *IterableDir) void { self.dir.close(); self.* = undefined; } pub const ChmodError = File.ChmodError; |
chmod()Changes the mode of the directory. The process must have the correct privileges in order to do this successfully, or must have the effective user ID matching the owner of the directory. |
pub fn chmod(self: IterableDir, new_mode: File.Mode) ChmodError!void { const file: File = .{ .handle = self.dir.fd, .capable_io_mode = .blocking, }; try file.chmod(new_mode); } |
chown() Changes the owner and group of the directory. The process must have the correct privileges in order to do this successfully. The group may be changed by the owner of the directory to any group of which the owner is a member. If the owner or group is specified as |
pub fn chown(self: IterableDir, owner: ?File.Uid, group: ?File.Gid) ChownError!void { const file: File = .{ .handle = self.dir.fd, .capable_io_mode = .blocking, }; try file.chown(owner, group); } pub const ChownError = File.ChownError; }; |
Dir |
pub const Dir = struct { fd: os.fd_t, pub const iterate = @compileError("only 'IterableDir' can be iterated; 'IterableDir' can be obtained with 'openIterableDir'"); pub const walk = @compileError("only 'IterableDir' can be walked; 'IterableDir' can be obtained with 'openIterableDir'"); pub const chmod = @compileError("only 'IterableDir' can have its mode changed; 'IterableDir' can be obtained with 'openIterableDir'"); pub const chown = @compileError("only 'IterableDir' can have its owner changed; 'IterableDir' can be obtained with 'openIterableDir'"); pub const OpenError = error{ FileNotFound, NotDir, InvalidHandle, AccessDenied, SymLinkLoop, ProcessFdQuotaExceeded, NameTooLong, SystemFdQuotaExceeded, NoDevice, SystemResources, InvalidUtf8, BadPathName, DeviceBusy, NetworkNotFound, } || os.UnexpectedError; |
close() On Windows, |
pub fn close(self: *Dir) void { if (need_async_thread) { std.event.Loop.instance.?.close(self.fd); } else { os.close(self.fd); } self.* = undefined; } |
openFile() Opens a file for reading or writing, without attempting to create a new file. To create a new file, see |
pub fn openFile(self: Dir, sub_path: []const u8, flags: File.OpenFlags) File.OpenError!File { if (builtin.os.tag == .windows) { const path_w = try os.windows.sliceToPrefixedFileW(self.fd, sub_path); return self.openFileW(path_w.span(), flags); } if (builtin.os.tag == .wasi and !builtin.link_libc) { return self.openFileWasi(sub_path, flags); } const path_c = try os.toPosixPath(sub_path); return self.openFileZ(&path_c, flags); } |
openFileWasi() Same as |
pub fn openFileWasi(self: Dir, sub_path: []const u8, flags: File.OpenFlags) File.OpenError!File { const w = os.wasi; var fdflags: w.fdflags_t = 0x0; var base: w.rights_t = 0x0; if (flags.isRead()) { base |= w.RIGHT.FD_READ | w.RIGHT.FD_TELL | w.RIGHT.FD_SEEK | w.RIGHT.FD_FILESTAT_GET; } if (flags.isWrite()) { fdflags |= w.FDFLAG.APPEND; base |= w.RIGHT.FD_WRITE | w.RIGHT.FD_TELL | w.RIGHT.FD_SEEK | w.RIGHT.FD_DATASYNC | w.RIGHT.FD_FDSTAT_SET_FLAGS | w.RIGHT.FD_SYNC | w.RIGHT.FD_ALLOCATE | w.RIGHT.FD_ADVISE | w.RIGHT.FD_FILESTAT_SET_TIMES | w.RIGHT.FD_FILESTAT_SET_SIZE; } const fd = try os.openatWasi(self.fd, sub_path, 0x0, 0x0, fdflags, base, 0x0); return File{ .handle = fd }; } |
openFileZ() Same as |
pub fn openFileZ(self: Dir, sub_path: [*:0]const u8, flags: File.OpenFlags) File.OpenError!File { if (builtin.os.tag == .windows) { const path_w = try os.windows.cStrToPrefixedFileW(self.fd, sub_path); return self.openFileW(path_w.span(), flags); } var os_flags: u32 = 0; if (@hasDecl(os.O, "CLOEXEC")) os_flags = os.O.CLOEXEC; // Use the O locking flags if the os supports them to acquire the lock // atomically. const has_flock_open_flags = @hasDecl(os.O, "EXLOCK"); if (has_flock_open_flags) { // Note that the O.NONBLOCK flag is removed after the openat() call // is successful. const nonblocking_lock_flag: u32 = if (flags.lock_nonblocking) os.O.NONBLOCK else 0; os_flags |= switch (flags.lock) { .none => @as(u32, 0), .shared => os.O.SHLOCK | nonblocking_lock_flag, .exclusive => os.O.EXLOCK | nonblocking_lock_flag, }; } if (@hasDecl(os.O, "LARGEFILE")) { os_flags |= os.O.LARGEFILE; } if (@hasDecl(os.O, "NOCTTY") and !flags.allow_ctty) { os_flags |= os.O.NOCTTY; } os_flags |= switch (flags.mode) { .read_only => @as(u32, os.O.RDONLY), .write_only => @as(u32, os.O.WRONLY), .read_write => @as(u32, os.O.RDWR), }; const fd = if (flags.intended_io_mode != .blocking) try std.event.Loop.instance.?.openatZ(self.fd, sub_path, os_flags, 0) else try os.openatZ(self.fd, sub_path, os_flags, 0); errdefer os.close(fd); // WASI doesn't have os.flock so we intetinally check OS prior to the inner if block // since it is not compiltime-known and we need to avoid undefined symbol in Wasm. if (@hasDecl(os.system, "LOCK") and builtin.target.os.tag != .wasi) { if (!has_flock_open_flags and flags.lock != .none) { // TODO: integrate async I/O const lock_nonblocking = if (flags.lock_nonblocking) os.LOCK.NB else @as(i32, 0); try os.flock(fd, switch (flags.lock) { .none => unreachable, .shared => os.LOCK.SH | lock_nonblocking, .exclusive => os.LOCK.EX | lock_nonblocking, }); } } if (has_flock_open_flags and flags.lock_nonblocking) { var fl_flags = os.fcntl(fd, os.F.GETFL, 0) catch |err| switch (err) { error.FileBusy => unreachable, error.Locked => unreachable, error.PermissionDenied => unreachable, error.DeadLock => unreachable, error.LockedRegionLimitExceeded => unreachable, else => |e| return e, }; fl_flags &= ~@as(usize, os.O.NONBLOCK); _ = os.fcntl(fd, os.F.SETFL, fl_flags) catch |err| switch (err) { error.FileBusy => unreachable, error.Locked => unreachable, error.PermissionDenied => unreachable, error.DeadLock => unreachable, error.LockedRegionLimitExceeded => unreachable, else => |e| return e, }; } return File{ .handle = fd, .capable_io_mode = .blocking, .intended_io_mode = flags.intended_io_mode, }; } |
openFileW() Same as |
pub fn openFileW(self: Dir, sub_path_w: []const u16, flags: File.OpenFlags) File.OpenError!File { const w = os.windows; const file: File = .{ .handle = try w.OpenFile(sub_path_w, .{ .dir = self.fd, .access_mask = w.SYNCHRONIZE | (if (flags.isRead()) @as(u32, w.GENERIC_READ) else 0) | (if (flags.isWrite()) @as(u32, w.GENERIC_WRITE) else 0), .creation = w.FILE_OPEN, .io_mode = flags.intended_io_mode, }), .capable_io_mode = std.io.default_mode, .intended_io_mode = flags.intended_io_mode, }; errdefer file.close(); var io: w.IO_STATUS_BLOCK = undefined; const range_off: w.LARGE_INTEGER = 0; const range_len: w.LARGE_INTEGER = 1; const exclusive = switch (flags.lock) { .none => return file, .shared => false, .exclusive => true, }; try w.LockFile( file.handle, null, null, null, &io, &range_off, &range_len, null, @intFromBool(flags.lock_nonblocking), @intFromBool(exclusive), ); return file; } |
createFile() Creates, opens, or overwrites a file with write access. Call |
pub fn createFile(self: Dir, sub_path: []const u8, flags: File.CreateFlags) File.OpenError!File { if (builtin.os.tag == .windows) { const path_w = try os.windows.sliceToPrefixedFileW(self.fd, sub_path); return self.createFileW(path_w.span(), flags); } if (builtin.os.tag == .wasi and !builtin.link_libc) { return self.createFileWasi(sub_path, flags); } const path_c = try os.toPosixPath(sub_path); return self.createFileZ(&path_c, flags); } |
createFileWasi() Same as |
pub fn createFileWasi(self: Dir, sub_path: []const u8, flags: File.CreateFlags) File.OpenError!File { const w = os.wasi; var oflags = w.O.CREAT; var base: w.rights_t = w.RIGHT.FD_WRITE | w.RIGHT.FD_DATASYNC | w.RIGHT.FD_SEEK | w.RIGHT.FD_TELL | w.RIGHT.FD_FDSTAT_SET_FLAGS | w.RIGHT.FD_SYNC | w.RIGHT.FD_ALLOCATE | w.RIGHT.FD_ADVISE | w.RIGHT.FD_FILESTAT_SET_TIMES | w.RIGHT.FD_FILESTAT_SET_SIZE | w.RIGHT.FD_FILESTAT_GET; if (flags.read) { base |= w.RIGHT.FD_READ; } if (flags.truncate) { oflags |= w.O.TRUNC; } if (flags.exclusive) { oflags |= w.O.EXCL; } const fd = try os.openatWasi(self.fd, sub_path, 0x0, oflags, 0x0, base, 0x0); return File{ .handle = fd }; } |
createFileZ() Same as |
pub fn createFileZ(self: Dir, sub_path_c: [*:0]const u8, flags: File.CreateFlags) File.OpenError!File { if (builtin.os.tag == .windows) { const path_w = try os.windows.cStrToPrefixedFileW(self.fd, sub_path_c); return self.createFileW(path_w.span(), flags); } // Use the O locking flags if the os supports them to acquire the lock // atomically. const has_flock_open_flags = @hasDecl(os.O, "EXLOCK"); // Note that the O.NONBLOCK flag is removed after the openat() call // is successful. const nonblocking_lock_flag: u32 = if (has_flock_open_flags and flags.lock_nonblocking) os.O.NONBLOCK else 0; const lock_flag: u32 = if (has_flock_open_flags) switch (flags.lock) { .none => @as(u32, 0), .shared => os.O.SHLOCK | nonblocking_lock_flag, .exclusive => os.O.EXLOCK | nonblocking_lock_flag, } else 0; const O_LARGEFILE = if (@hasDecl(os.O, "LARGEFILE")) os.O.LARGEFILE else 0; const os_flags = lock_flag | O_LARGEFILE | os.O.CREAT | os.O.CLOEXEC | (if (flags.truncate) @as(u32, os.O.TRUNC) else 0) | (if (flags.read) @as(u32, os.O.RDWR) else os.O.WRONLY) | (if (flags.exclusive) @as(u32, os.O.EXCL) else 0); const fd = if (flags.intended_io_mode != .blocking) try std.event.Loop.instance.?.openatZ(self.fd, sub_path_c, os_flags, flags.mode) else try os.openatZ(self.fd, sub_path_c, os_flags, flags.mode); errdefer os.close(fd); // WASI doesn't have os.flock so we intetinally check OS prior to the inner if block // since it is not compiltime-known and we need to avoid undefined symbol in Wasm. if (builtin.target.os.tag != .wasi) { if (!has_flock_open_flags and flags.lock != .none) { // TODO: integrate async I/O const lock_nonblocking = if (flags.lock_nonblocking) os.LOCK.NB else @as(i32, 0); try os.flock(fd, switch (flags.lock) { .none => unreachable, .shared => os.LOCK.SH | lock_nonblocking, .exclusive => os.LOCK.EX | lock_nonblocking, }); } } if (has_flock_open_flags and flags.lock_nonblocking) { var fl_flags = os.fcntl(fd, os.F.GETFL, 0) catch |err| switch (err) { error.FileBusy => unreachable, error.Locked => unreachable, error.PermissionDenied => unreachable, error.DeadLock => unreachable, error.LockedRegionLimitExceeded => unreachable, else => |e| return e, }; fl_flags &= ~@as(usize, os.O.NONBLOCK); _ = os.fcntl(fd, os.F.SETFL, fl_flags) catch |err| switch (err) { error.FileBusy => unreachable, error.Locked => unreachable, error.PermissionDenied => unreachable, error.DeadLock => unreachable, error.LockedRegionLimitExceeded => unreachable, else => |e| return e, }; } return File{ .handle = fd, .capable_io_mode = .blocking, .intended_io_mode = flags.intended_io_mode, }; } |
createFileW() Same as |
pub fn createFileW(self: Dir, sub_path_w: []const u16, flags: File.CreateFlags) File.OpenError!File { const w = os.windows; const read_flag = if (flags.read) @as(u32, w.GENERIC_READ) else 0; const file: File = .{ .handle = try os.windows.OpenFile(sub_path_w, .{ .dir = self.fd, .access_mask = w.SYNCHRONIZE | w.GENERIC_WRITE | read_flag, .creation = if (flags.exclusive) @as(u32, w.FILE_CREATE) else if (flags.truncate) @as(u32, w.FILE_OVERWRITE_IF) else @as(u32, w.FILE_OPEN_IF), .io_mode = flags.intended_io_mode, }), .capable_io_mode = std.io.default_mode, .intended_io_mode = flags.intended_io_mode, }; errdefer file.close(); var io: w.IO_STATUS_BLOCK = undefined; const range_off: w.LARGE_INTEGER = 0; const range_len: w.LARGE_INTEGER = 1; const exclusive = switch (flags.lock) { .none => return file, .shared => false, .exclusive => true, }; try w.LockFile( file.handle, null, null, null, &io, &range_off, &range_len, null, @intFromBool(flags.lock_nonblocking), @intFromBool(exclusive), ); return file; } |
makeDir() Creates a single directory with a relative or absolute path. To create multiple directories to make an entire path, see |
pub fn makeDir(self: Dir, sub_path: []const u8) !void { try os.mkdirat(self.fd, sub_path, default_new_dir_mode); } |
makeDirZ() Creates a single directory with a relative or absolute null-terminated UTF-8-encoded path. To create multiple directories to make an entire path, see |
pub fn makeDirZ(self: Dir, sub_path: [*:0]const u8) !void { try os.mkdiratZ(self.fd, sub_path, default_new_dir_mode); } |
makeDirW() Creates a single directory with a relative or absolute null-terminated WTF-16-encoded path. To create multiple directories to make an entire path, see |
pub fn makeDirW(self: Dir, sub_path: [*:0]const u16) !void { try os.mkdiratW(self.fd, sub_path, default_new_dir_mode); } |
makePath()Calls makeDir iteratively to make an entire path (i.e. creating any parent directories that do not exist). Returns success if the path already exists and is a directory. This function is not atomic, and if it returns an error, the file system may have been modified regardless. |
pub fn makePath(self: Dir, sub_path: []const u8) !void { var it = try path.componentIterator(sub_path); var component = it.last() orelse return; while (true) { self.makeDir(component.path) catch |err| switch (err) { error.PathAlreadyExists => { // TODO stat the file and return an error if it's not a directory // this is important because otherwise a dangling symlink // could cause an infinite loop }, error.FileNotFound => |e| { component = it.previous() orelse return e; continue; }, else => |e| return e, }; component = it.next() orelse return; } } fn makeOpenPathAccessMaskW(self: Dir, sub_path: []const u8, access_mask: u32, no_follow: bool) OpenError!Dir { const w = os.windows; var it = try path.componentIterator(sub_path); // If there are no components in the path, then create a dummy component with the full path. var component = it.last() orelse path.NativeUtf8ComponentIterator.Component{ .name = "", .path = sub_path, }; while (true) { const sub_path_w = try w.sliceToPrefixedFileW(self.fd, component.path); const is_last = it.peekNext() == null; var result = self.makeOpenDirAccessMaskW(sub_path_w.span().ptr, access_mask, .{ .no_follow = no_follow, .create_disposition = if (is_last) w.FILE_OPEN_IF else w.FILE_CREATE, }) catch |err| switch (err) { error.FileNotFound => |e| { component = it.previous() orelse return e; continue; }, else => |e| return e, }; component = it.next() orelse return result; // Don't leak the intermediate file handles result.close(); } } |
makeOpenPath() Calls makeOpenDirAccessMaskW iteratively to make an entire path (i.e. creating any parent directories that do not exist). Opens the dir if the path already exists and is a directory. This function is not atomic, and if it returns an error, the file system may have been modified regardless. This function performs |
pub fn makeOpenPath(self: Dir, sub_path: []const u8, open_dir_options: OpenDirOptions) !Dir { return switch (builtin.os.tag) { .windows => { const w = os.windows; const base_flags = w.STANDARD_RIGHTS_READ | w.FILE_READ_ATTRIBUTES | w.FILE_READ_EA | w.SYNCHRONIZE | w.FILE_TRAVERSE; return self.makeOpenPathAccessMaskW(sub_path, base_flags, open_dir_options.no_follow); }, else => { return self.openDir(sub_path, open_dir_options) catch |err| switch (err) { error.FileNotFound => { try self.makePath(sub_path); return self.openDir(sub_path, open_dir_options); }, else => |e| return e, }; }, }; } |
makeOpenPathIterable() This function performs |
pub fn makeOpenPathIterable(self: Dir, sub_path: []const u8, open_dir_options: OpenDirOptions) !IterableDir { return switch (builtin.os.tag) { .windows => { const w = os.windows; const base_flags = w.STANDARD_RIGHTS_READ | w.FILE_READ_ATTRIBUTES | w.FILE_READ_EA | w.SYNCHRONIZE | w.FILE_TRAVERSE | w.FILE_LIST_DIRECTORY; return IterableDir{ .dir = try self.makeOpenPathAccessMaskW(sub_path, base_flags, open_dir_options.no_follow), }; }, else => { return self.openIterableDir(sub_path, open_dir_options) catch |err| switch (err) { error.FileNotFound => { try self.makePath(sub_path); return self.openIterableDir(sub_path, open_dir_options); }, else => |e| return e, }; }, }; } |
realpath() This function returns the canonicalized absolute pathname of |
pub fn realpath(self: Dir, pathname: []const u8, out_buffer: []u8) ![]u8 { if (builtin.os.tag == .wasi) { @compileError("realpath is not available on WASI"); } if (builtin.os.tag == .windows) { const pathname_w = try os.windows.sliceToPrefixedFileW(self.fd, pathname); return self.realpathW(pathname_w.span(), out_buffer); } const pathname_c = try os.toPosixPath(pathname); return self.realpathZ(&pathname_c, out_buffer); } |
realpathZ() Same as |
pub fn realpathZ(self: Dir, pathname: [*:0]const u8, out_buffer: []u8) ![]u8 { if (builtin.os.tag == .windows) { const pathname_w = try os.windows.cStrToPrefixedFileW(self.fd, pathname); return self.realpathW(pathname_w.span(), out_buffer); } const flags = if (builtin.os.tag == .linux) os.O.PATH | os.O.NONBLOCK | os.O.CLOEXEC else os.O.NONBLOCK | os.O.CLOEXEC; const fd = os.openatZ(self.fd, pathname, flags, 0) catch |err| switch (err) { error.FileLocksNotSupported => unreachable, else => |e| return e, }; defer os.close(fd); // Use of MAX_PATH_BYTES here is valid as the realpath function does not // have a variant that takes an arbitrary-size buffer. // TODO(#4812): Consider reimplementing realpath or using the POSIX.1-2008 // NULL out parameter (GNU's canonicalize_file_name) to handle overelong // paths. musl supports passing NULL but restricts the output to PATH_MAX // anyway. var buffer: [MAX_PATH_BYTES]u8 = undefined; const out_path = try os.getFdPath(fd, &buffer); if (out_path.len > out_buffer.len) { return error.NameTooLong; } const result = out_buffer[0..out_path.len]; @memcpy(result, out_path); return result; } |
realpathW() Windows-only. Same as |
pub fn realpathW(self: Dir, pathname: []const u16, out_buffer: []u8) ![]u8 { const w = os.windows; const access_mask = w.GENERIC_READ | w.SYNCHRONIZE; const share_access = w.FILE_SHARE_READ; const creation = w.FILE_OPEN; const h_file = blk: { const res = w.OpenFile(pathname, .{ .dir = self.fd, .access_mask = access_mask, .share_access = share_access, .creation = creation, .io_mode = .blocking, .filter = .any, }) catch |err| switch (err) { error.WouldBlock => unreachable, else => |e| return e, }; break :blk res; }; defer w.CloseHandle(h_file); // Use of MAX_PATH_BYTES here is valid as the realpath function does not // have a variant that takes an arbitrary-size buffer. // TODO(#4812): Consider reimplementing realpath or using the POSIX.1-2008 // NULL out parameter (GNU's canonicalize_file_name) to handle overelong // paths. musl supports passing NULL but restricts the output to PATH_MAX // anyway. var buffer: [MAX_PATH_BYTES]u8 = undefined; const out_path = try os.getFdPath(h_file, &buffer); if (out_path.len > out_buffer.len) { return error.NameTooLong; } const result = out_buffer[0..out_path.len]; @memcpy(result, out_path); return result; } |
realpathAlloc() Same as |
pub fn realpathAlloc(self: Dir, allocator: Allocator, pathname: []const u8) ![]u8 { // Use of MAX_PATH_BYTES here is valid as the realpath function does not // have a variant that takes an arbitrary-size buffer. // TODO(#4812): Consider reimplementing realpath or using the POSIX.1-2008 // NULL out parameter (GNU's canonicalize_file_name) to handle overelong // paths. musl supports passing NULL but restricts the output to PATH_MAX // anyway. var buf: [MAX_PATH_BYTES]u8 = undefined; return allocator.dupe(u8, try self.realpath(pathname, buf[0..])); } |
setAsCwd()Changes the current working directory to the open directory handle. This modifies global state and can have surprising effects in multi- threaded applications. Most applications and especially libraries should not call this function as a general rule, however it can have use cases in, for example, implementing a shell, or child process execution. Not all targets support this. For example, WASI does not have the concept of a current working directory. |
pub fn setAsCwd(self: Dir) !void { if (builtin.os.tag == .wasi) { @compileError("changing cwd is not currently possible in WASI"); } if (builtin.os.tag == .windows) { var dir_path_buffer: [os.windows.PATH_MAX_WIDE]u16 = undefined; var dir_path = try os.windows.GetFinalPathNameByHandle(self.fd, .{}, &dir_path_buffer); if (builtin.link_libc) { return os.chdirW(dir_path); } return os.windows.SetCurrentDirectory(dir_path); } try os.fchdir(self.fd); } pub const OpenDirOptions = struct { access_sub_paths: bool = true, no_follow: bool = false, }; |
openDir() |
pub fn openDir(self: Dir, sub_path: []const u8, args: OpenDirOptions) OpenError!Dir { if (builtin.os.tag == .windows) { const sub_path_w = try os.windows.sliceToPrefixedFileW(self.fd, sub_path); return self.openDirW(sub_path_w.span().ptr, args, false); } else if (builtin.os.tag == .wasi and !builtin.link_libc) { return self.openDirWasi(sub_path, args); } else { const sub_path_c = try os.toPosixPath(sub_path); return self.openDirZ(&sub_path_c, args, false); } } |
openIterableDir() Opens an iterable directory at the given path. The directory is a system resource that remains open until |
pub fn openIterableDir(self: Dir, sub_path: []const u8, args: OpenDirOptions) OpenError!IterableDir { if (builtin.os.tag == .windows) { const sub_path_w = try os.windows.sliceToPrefixedFileW(self.fd, sub_path); return IterableDir{ .dir = try self.openDirW(sub_path_w.span().ptr, args, true) }; } else if (builtin.os.tag == .wasi and !builtin.link_libc) { return IterableDir{ .dir = try self.openDirWasi(sub_path, args) }; } else { const sub_path_c = try os.toPosixPath(sub_path); return IterableDir{ .dir = try self.openDirZ(&sub_path_c, args, true) }; } } |
openDirWasi() Same as |
pub fn openDirWasi(self: Dir, sub_path: []const u8, args: OpenDirOptions) OpenError!Dir { const w = os.wasi; var base: w.rights_t = w.RIGHT.FD_FILESTAT_GET | w.RIGHT.FD_FDSTAT_SET_FLAGS | w.RIGHT.FD_FILESTAT_SET_TIMES; if (args.access_sub_paths) { base |= w.RIGHT.FD_READDIR | w.RIGHT.PATH_CREATE_DIRECTORY | w.RIGHT.PATH_CREATE_FILE | w.RIGHT.PATH_LINK_SOURCE | w.RIGHT.PATH_LINK_TARGET | w.RIGHT.PATH_OPEN | w.RIGHT.PATH_READLINK | w.RIGHT.PATH_RENAME_SOURCE | w.RIGHT.PATH_RENAME_TARGET | w.RIGHT.PATH_FILESTAT_GET | w.RIGHT.PATH_FILESTAT_SET_SIZE | w.RIGHT.PATH_FILESTAT_SET_TIMES | w.RIGHT.PATH_SYMLINK | w.RIGHT.PATH_REMOVE_DIRECTORY | w.RIGHT.PATH_UNLINK_FILE; } const symlink_flags: w.lookupflags_t = if (args.no_follow) 0x0 else w.LOOKUP_SYMLINK_FOLLOW; // TODO do we really need all the rights here? const inheriting: w.rights_t = w.RIGHT.ALL ^ w.RIGHT.SOCK_SHUTDOWN; const result = os.openatWasi( self.fd, sub_path, symlink_flags, w.O.DIRECTORY, 0x0, base, inheriting, ); const fd = result catch |err| switch (err) { error.FileTooBig => unreachable, // can't happen for directories error.IsDir => unreachable, // we're providing O.DIRECTORY error.NoSpaceLeft => unreachable, // not providing O.CREAT error.PathAlreadyExists => unreachable, // not providing O.CREAT error.FileLocksNotSupported => unreachable, // locking folders is not supported error.WouldBlock => unreachable, // can't happen for directories error.FileBusy => unreachable, // can't happen for directories else => |e| return e, }; return Dir{ .fd = fd }; } |
openDirZ() Same as |
pub fn openDirZ(self: Dir, sub_path_c: [*:0]const u8, args: OpenDirOptions, iterable: bool) OpenError!Dir { if (builtin.os.tag == .windows) { const sub_path_w = try os.windows.cStrToPrefixedFileW(self.fd, sub_path_c); return self.openDirW(sub_path_w.span().ptr, args, iterable); } const symlink_flags: u32 = if (args.no_follow) os.O.NOFOLLOW else 0x0; if (!iterable) { const O_PATH = if (@hasDecl(os.O, "PATH")) os.O.PATH else 0; return self.openDirFlagsZ(sub_path_c, os.O.DIRECTORY | os.O.RDONLY | os.O.CLOEXEC | O_PATH | symlink_flags); } else { return self.openDirFlagsZ(sub_path_c, os.O.DIRECTORY | os.O.RDONLY | os.O.CLOEXEC | symlink_flags); } } |
openDirW() Same as |
pub fn openDirW(self: Dir, sub_path_w: [*:0]const u16, args: OpenDirOptions, iterable: bool) OpenError!Dir { const w = os.windows; // TODO remove some of these flags if args.access_sub_paths is false const base_flags = w.STANDARD_RIGHTS_READ | w.FILE_READ_ATTRIBUTES | w.FILE_READ_EA | w.SYNCHRONIZE | w.FILE_TRAVERSE; const flags: u32 = if (iterable) base_flags | w.FILE_LIST_DIRECTORY else base_flags; var dir = try self.makeOpenDirAccessMaskW(sub_path_w, flags, .{ .no_follow = args.no_follow, .create_disposition = w.FILE_OPEN, }); return dir; } fn openDirFlagsZ(self: Dir, sub_path_c: [*:0]const u8, flags: u32) OpenError!Dir { const result = if (need_async_thread) std.event.Loop.instance.?.openatZ(self.fd, sub_path_c, flags, 0) else os.openatZ(self.fd, sub_path_c, flags, 0); const fd = result catch |err| switch (err) { error.FileTooBig => unreachable, // can't happen for directories error.IsDir => unreachable, // we're providing O.DIRECTORY error.NoSpaceLeft => unreachable, // not providing O.CREAT error.PathAlreadyExists => unreachable, // not providing O.CREAT error.FileLocksNotSupported => unreachable, // locking folders is not supported error.WouldBlock => unreachable, // can't happen for directories error.FileBusy => unreachable, // can't happen for directories else => |e| return e, }; return Dir{ .fd = fd }; } const MakeOpenDirAccessMaskWOptions = struct { no_follow: bool, create_disposition: u32, }; fn makeOpenDirAccessMaskW(self: Dir, sub_path_w: [*:0]const u16, access_mask: u32, flags: MakeOpenDirAccessMaskWOptions) OpenError!Dir { const w = os.windows; var result = Dir{ .fd = undefined, }; const path_len_bytes = @as(u16, @intCast(mem.sliceTo(sub_path_w, 0).len * 2)); var nt_name = w.UNICODE_STRING{ .Length = path_len_bytes, .MaximumLength = path_len_bytes, .Buffer = @constCast(sub_path_w), }; var attr = w.OBJECT_ATTRIBUTES{ .Length = @sizeOf(w.OBJECT_ATTRIBUTES), .RootDirectory = if (path.isAbsoluteWindowsW(sub_path_w)) null else self.fd, .Attributes = 0, // Note we do not use OBJ_CASE_INSENSITIVE here. .ObjectName = &nt_name, .SecurityDescriptor = null, .SecurityQualityOfService = null, }; const open_reparse_point: w.DWORD = if (flags.no_follow) w.FILE_OPEN_REPARSE_POINT else 0x0; var io: w.IO_STATUS_BLOCK = undefined; const rc = w.ntdll.NtCreateFile( &result.fd, access_mask, &attr, &io, null, w.FILE_ATTRIBUTE_NORMAL, w.FILE_SHARE_READ | w.FILE_SHARE_WRITE, flags.create_disposition, w.FILE_DIRECTORY_FILE | w.FILE_SYNCHRONOUS_IO_NONALERT | w.FILE_OPEN_FOR_BACKUP_INTENT | open_reparse_point, null, 0, ); switch (rc) { .SUCCESS => return result, .OBJECT_NAME_INVALID => return error.BadPathName, .OBJECT_NAME_NOT_FOUND => return error.FileNotFound, .OBJECT_PATH_NOT_FOUND => return error.FileNotFound, .NOT_A_DIRECTORY => return error.NotDir, // This can happen if the directory has 'List folder contents' permission set to 'Deny' // and the directory is trying to be opened for iteration. .ACCESS_DENIED => return error.AccessDenied, .INVALID_PARAMETER => unreachable, else => return w.unexpectedStatus(rc), } } pub const DeleteFileError = os.UnlinkError; |
deleteFile() |
pub fn deleteFile(self: Dir, sub_path: []const u8) DeleteFileError!void { if (builtin.os.tag == .windows) { const sub_path_w = try os.windows.sliceToPrefixedFileW(self.fd, sub_path); return self.deleteFileW(sub_path_w.span()); } else if (builtin.os.tag == .wasi and !builtin.link_libc) { os.unlinkat(self.fd, sub_path, 0) catch |err| switch (err) { error.DirNotEmpty => unreachable, // not passing AT.REMOVEDIR else => |e| return e, }; } else { const sub_path_c = try os.toPosixPath(sub_path); return self.deleteFileZ(&sub_path_c); } } |
deleteFileZ() Same as |
pub fn deleteFileZ(self: Dir, sub_path_c: [*:0]const u8) DeleteFileError!void { os.unlinkatZ(self.fd, sub_path_c, 0) catch |err| switch (err) { error.DirNotEmpty => unreachable, // not passing AT.REMOVEDIR error.AccessDenied => |e| switch (builtin.os.tag) { // non-Linux POSIX systems return EPERM when trying to delete a directory, so // we need to handle that case specifically and translate the error .macos, .ios, .freebsd, .netbsd, .dragonfly, .openbsd, .solaris, .illumos => { // Don't follow symlinks to match unlinkat (which acts on symlinks rather than follows them) const fstat = os.fstatatZ(self.fd, sub_path_c, os.AT.SYMLINK_NOFOLLOW) catch return e; const is_dir = fstat.mode & os.S.IFMT == os.S.IFDIR; return if (is_dir) error.IsDir else e; }, else => return e, }, else => |e| return e, }; } |
deleteFileW() Same as |
pub fn deleteFileW(self: Dir, sub_path_w: []const u16) DeleteFileError!void { os.unlinkatW(self.fd, sub_path_w, 0) catch |err| switch (err) { error.DirNotEmpty => unreachable, // not passing AT.REMOVEDIR else => |e| return e, }; } pub const DeleteDirError = error{ DirNotEmpty, FileNotFound, AccessDenied, FileBusy, FileSystem, SymLinkLoop, NameTooLong, NotDir, SystemResources, ReadOnlyFileSystem, InvalidUtf8, BadPathName, NetworkNotFound, Unexpected, }; |
deleteDir() On Windows, |
pub fn deleteDir(self: Dir, sub_path: []const u8) DeleteDirError!void { if (builtin.os.tag == .windows) { const sub_path_w = try os.windows.sliceToPrefixedFileW(self.fd, sub_path); return self.deleteDirW(sub_path_w.span()); } else if (builtin.os.tag == .wasi and !builtin.link_libc) { os.unlinkat(self.fd, sub_path, os.AT.REMOVEDIR) catch |err| switch (err) { error.IsDir => unreachable, // not possible since we pass AT.REMOVEDIR else => |e| return e, }; } else { const sub_path_c = try os.toPosixPath(sub_path); return self.deleteDirZ(&sub_path_c); } } |
deleteDirZ() Same as |
pub fn deleteDirZ(self: Dir, sub_path_c: [*:0]const u8) DeleteDirError!void { os.unlinkatZ(self.fd, sub_path_c, os.AT.REMOVEDIR) catch |err| switch (err) { error.IsDir => unreachable, // not possible since we pass AT.REMOVEDIR else => |e| return e, }; } |
deleteDirW() Same as |
pub fn deleteDirW(self: Dir, sub_path_w: []const u16) DeleteDirError!void { os.unlinkatW(self.fd, sub_path_w, os.AT.REMOVEDIR) catch |err| switch (err) { error.IsDir => unreachable, // not possible since we pass AT.REMOVEDIR else => |e| return e, }; } pub const RenameError = os.RenameError; |
rename() Change the name or location of a file or directory. If new_sub_path already exists, it will be replaced. Renaming a file over an existing directory or a directory over an existing file will fail with |
pub fn rename(self: Dir, old_sub_path: []const u8, new_sub_path: []const u8) RenameError!void { return os.renameat(self.fd, old_sub_path, self.fd, new_sub_path); } |
renameZ() Same as |
pub fn renameZ(self: Dir, old_sub_path_z: [*:0]const u8, new_sub_path_z: [*:0]const u8) RenameError!void { return os.renameatZ(self.fd, old_sub_path_z, self.fd, new_sub_path_z); } |
renameW() Same as |
pub fn renameW(self: Dir, old_sub_path_w: []const u16, new_sub_path_w: []const u16) RenameError!void { return os.renameatW(self.fd, old_sub_path_w, self.fd, new_sub_path_w); } |
symLink() Creates a symbolic link named |
pub fn symLink( self: Dir, target_path: []const u8, sym_link_path: []const u8, flags: SymLinkFlags, ) !void { if (builtin.os.tag == .wasi and !builtin.link_libc) { return self.symLinkWasi(target_path, sym_link_path, flags); } if (builtin.os.tag == .windows) { // Target path does not use sliceToPrefixedFileW because certain paths // are handled differently when creating a symlink than they would be // when converting to an NT namespaced path. CreateSymbolicLink in // symLinkW will handle the necessary conversion. var target_path_w: os.windows.PathSpace = undefined; target_path_w.len = try std.unicode.utf8ToUtf16Le(&target_path_w.data, target_path); target_path_w.data[target_path_w.len] = 0; const sym_link_path_w = try os.windows.sliceToPrefixedFileW(self.fd, sym_link_path); return self.symLinkW(target_path_w.span(), sym_link_path_w.span(), flags); } const target_path_c = try os.toPosixPath(target_path); const sym_link_path_c = try os.toPosixPath(sym_link_path); return self.symLinkZ(&target_path_c, &sym_link_path_c, flags); } |
symLinkWasi() WASI-only. Same as |
pub fn symLinkWasi( self: Dir, target_path: []const u8, sym_link_path: []const u8, _: SymLinkFlags, ) !void { return os.symlinkat(target_path, self.fd, sym_link_path); } |
symLinkZ() Same as |
pub fn symLinkZ( self: Dir, target_path_c: [*:0]const u8, sym_link_path_c: [*:0]const u8, flags: SymLinkFlags, ) !void { if (builtin.os.tag == .windows) { const target_path_w = try os.windows.cStrToPrefixedFileW(self.fd, target_path_c); const sym_link_path_w = try os.windows.cStrToPrefixedFileW(self.fd, sym_link_path_c); return self.symLinkW(target_path_w.span(), sym_link_path_w.span(), flags); } return os.symlinkatZ(target_path_c, self.fd, sym_link_path_c); } |
symLinkW() Windows-only. Same as |
pub fn symLinkW( self: Dir, target_path_w: [:0]const u16, sym_link_path_w: []const u16, flags: SymLinkFlags, ) !void { return os.windows.CreateSymbolicLink(self.fd, sym_link_path_w, target_path_w, flags.is_directory); } pub const ReadLinkError = os.ReadLinkError; |
readLink() WTF-16, does not need to be NT-prefixed. The NT-prefixing of this path is handled by CreateSymbolicLink. WTF-16, must be NT-prefixed or relative Read value of a symbolic link. The return value is a slice of |
pub fn readLink(self: Dir, sub_path: []const u8, buffer: []u8) ReadLinkError![]u8 { if (builtin.os.tag == .wasi and !builtin.link_libc) { return self.readLinkWasi(sub_path, buffer); } if (builtin.os.tag == .windows) { const sub_path_w = try os.windows.sliceToPrefixedFileW(self.fd, sub_path); return self.readLinkW(sub_path_w.span(), buffer); } const sub_path_c = try os.toPosixPath(sub_path); return self.readLinkZ(&sub_path_c, buffer); } |
readLinkWasi() WASI-only. Same as |
pub fn readLinkWasi(self: Dir, sub_path: []const u8, buffer: []u8) ![]u8 { return os.readlinkat(self.fd, sub_path, buffer); } |
readLinkZ() Same as |
pub fn readLinkZ(self: Dir, sub_path_c: [*:0]const u8, buffer: []u8) ![]u8 { if (builtin.os.tag == .windows) { const sub_path_w = try os.windows.cStrToPrefixedFileW(self.fd, sub_path_c); return self.readLinkW(sub_path_w.span(), buffer); } return os.readlinkatZ(self.fd, sub_path_c, buffer); } |
readLinkW() Windows-only. Same as |
pub fn readLinkW(self: Dir, sub_path_w: []const u16, buffer: []u8) ![]u8 { return os.windows.ReadLink(self.fd, sub_path_w, buffer); } |
readFile() Read all of file contents using a preallocated buffer. The returned slice has the same pointer as |
pub fn readFile(self: Dir, file_path: []const u8, buffer: []u8) ![]u8 { var file = try self.openFile(file_path, .{}); defer file.close(); const end_index = try file.readAll(buffer); return buffer[0..end_index]; } |
readFileAlloc() On success, caller owns returned buffer. If the file is larger than |
pub fn readFileAlloc(self: Dir, allocator: mem.Allocator, file_path: []const u8, max_bytes: usize) ![]u8 { return self.readFileAllocOptions(allocator, file_path, max_bytes, null, @alignOf(u8), null); } |
readFileAllocOptions() On success, caller owns returned buffer. If the file is larger than |
pub fn readFileAllocOptions( self: Dir, allocator: mem.Allocator, file_path: []const u8, max_bytes: usize, size_hint: ?usize, comptime alignment: u29, comptime optional_sentinel: ?u8, ) !(if (optional_sentinel) |s| [:s]align(alignment) u8 else []align(alignment) u8) { var file = try self.openFile(file_path, .{}); defer file.close(); // If the file size doesn't fit a usize it'll be certainly greater than // `max_bytes` const stat_size = size_hint orelse math.cast(usize, try file.getEndPos()) orelse return error.FileTooBig; return file.readToEndAllocOptions(allocator, max_bytes, stat_size, alignment, optional_sentinel); } pub const DeleteTreeError = error{ InvalidHandle, AccessDenied, FileTooBig, SymLinkLoop, ProcessFdQuotaExceeded, NameTooLong, SystemFdQuotaExceeded, NoDevice, SystemResources, ReadOnlyFileSystem, FileSystem, FileBusy, DeviceBusy, NotDir, InvalidUtf8, BadPathName, NetworkNotFound, } || os.UnexpectedError; |
deleteTree() One of the path components was not a directory. This error is unreachable if |
pub fn deleteTree(self: Dir, sub_path: []const u8) DeleteTreeError!void { var initial_iterable_dir = (try self.deleteTreeOpenInitialSubpath(sub_path, .file)) orelse return; const StackItem = struct { name: []const u8, parent_dir: Dir, iter: IterableDir.Iterator, }; var stack = std.BoundedArray(StackItem, 16){}; defer { for (stack.slice()) |*item| { item.iter.dir.close(); } } stack.appendAssumeCapacity(StackItem{ .name = sub_path, .parent_dir = self, .iter = initial_iterable_dir.iterateAssumeFirstIteration(), }); process_stack: while (stack.len != 0) { var top = &(stack.slice()[stack.len - 1]); while (try top.iter.next()) |entry| { var treat_as_dir = entry.kind == .directory; handle_entry: while (true) { if (treat_as_dir) { if (stack.ensureUnusedCapacity(1)) { var iterable_dir = top.iter.dir.openIterableDir(entry.name, .{ .no_follow = true }) catch |err| switch (err) { error.NotDir => { treat_as_dir = false; continue :handle_entry; }, error.FileNotFound => { // That's fine, we were trying to remove this directory anyway. break :handle_entry; }, error.InvalidHandle, error.AccessDenied, error.SymLinkLoop, error.ProcessFdQuotaExceeded, error.NameTooLong, error.SystemFdQuotaExceeded, error.NoDevice, error.SystemResources, error.Unexpected, error.InvalidUtf8, error.BadPathName, error.NetworkNotFound, error.DeviceBusy, => |e| return e, }; stack.appendAssumeCapacity(StackItem{ .name = entry.name, .parent_dir = top.iter.dir, .iter = iterable_dir.iterateAssumeFirstIteration(), }); continue :process_stack; } else |_| { try top.iter.dir.deleteTreeMinStackSizeWithKindHint(entry.name, entry.kind); break :handle_entry; } } else { if (top.iter.dir.deleteFile(entry.name)) { break :handle_entry; } else |err| switch (err) { error.FileNotFound => break :handle_entry, // Impossible because we do not pass any path separators. error.NotDir => unreachable, error.IsDir => { treat_as_dir = true; continue :handle_entry; }, error.AccessDenied, error.InvalidUtf8, error.SymLinkLoop, error.NameTooLong, error.SystemResources, error.ReadOnlyFileSystem, error.FileSystem, error.FileBusy, error.BadPathName, error.NetworkNotFound, error.Unexpected, => |e| return e, } } } } // On Windows, we can't delete until the dir's handle has been closed, so // close it before we try to delete. top.iter.dir.close(); // In order to avoid double-closing the directory when cleaning up // the stack in the case of an error, we save the relevant portions and // pop the value from the stack. const parent_dir = top.parent_dir; const name = top.name; _ = stack.pop(); var need_to_retry: bool = false; parent_dir.deleteDir(name) catch |err| switch (err) { error.FileNotFound => {}, error.DirNotEmpty => need_to_retry = true, else => |e| return e, }; if (need_to_retry) { // Since we closed the handle that the previous iterator used, we // need to re-open the dir and re-create the iterator. var iterable_dir = iterable_dir: { var treat_as_dir = true; handle_entry: while (true) { if (treat_as_dir) { break :iterable_dir parent_dir.openIterableDir(name, .{ .no_follow = true }) catch |err| switch (err) { error.NotDir => { treat_as_dir = false; continue :handle_entry; }, error.FileNotFound => { // That's fine, we were trying to remove this directory anyway. continue :process_stack; }, error.InvalidHandle, error.AccessDenied, error.SymLinkLoop, error.ProcessFdQuotaExceeded, error.NameTooLong, error.SystemFdQuotaExceeded, error.NoDevice, error.SystemResources, error.Unexpected, error.InvalidUtf8, error.BadPathName, error.NetworkNotFound, error.DeviceBusy, => |e| return e, }; } else { if (parent_dir.deleteFile(name)) { continue :process_stack; } else |err| switch (err) { error.FileNotFound => continue :process_stack, // Impossible because we do not pass any path separators. error.NotDir => unreachable, error.IsDir => { treat_as_dir = true; continue :handle_entry; }, error.AccessDenied, error.InvalidUtf8, error.SymLinkLoop, error.NameTooLong, error.SystemResources, error.ReadOnlyFileSystem, error.FileSystem, error.FileBusy, error.BadPathName, error.NetworkNotFound, error.Unexpected, => |e| return e, } } } }; // We know there is room on the stack since we are just re-adding // the StackItem that we previously popped. stack.appendAssumeCapacity(StackItem{ .name = name, .parent_dir = parent_dir, .iter = iterable_dir.iterateAssumeFirstIteration(), }); continue :process_stack; } } } |
deleteTreeMinStackSize() Like |
pub fn deleteTreeMinStackSize(self: Dir, sub_path: []const u8) DeleteTreeError!void { return self.deleteTreeMinStackSizeWithKindHint(sub_path, .file); } fn deleteTreeMinStackSizeWithKindHint(self: Dir, sub_path: []const u8, kind_hint: File.Kind) DeleteTreeError!void { start_over: while (true) { var iterable_dir = (try self.deleteTreeOpenInitialSubpath(sub_path, kind_hint)) orelse return; var cleanup_dir_parent: ?IterableDir = null; defer if (cleanup_dir_parent) |*d| d.close(); var cleanup_dir = true; defer if (cleanup_dir) iterable_dir.close(); // Valid use of MAX_PATH_BYTES because dir_name_buf will only // ever store a single path component that was returned from the // filesystem. var dir_name_buf: [MAX_PATH_BYTES]u8 = undefined; var dir_name: []const u8 = sub_path; // Here we must avoid recursion, in order to provide O(1) memory guarantee of this function. // Go through each entry and if it is not a directory, delete it. If it is a directory, // open it, and close the original directory. Repeat. Then start the entire operation over. scan_dir: while (true) { var dir_it = iterable_dir.iterateAssumeFirstIteration(); dir_it: while (try dir_it.next()) |entry| { var treat_as_dir = entry.kind == .directory; handle_entry: while (true) { if (treat_as_dir) { const new_dir = iterable_dir.dir.openIterableDir(entry.name, .{ .no_follow = true }) catch |err| switch (err) { error.NotDir => { treat_as_dir = false; continue :handle_entry; }, error.FileNotFound => { // That's fine, we were trying to remove this directory anyway. continue :dir_it; }, error.InvalidHandle, error.AccessDenied, error.SymLinkLoop, error.ProcessFdQuotaExceeded, error.NameTooLong, error.SystemFdQuotaExceeded, error.NoDevice, error.SystemResources, error.Unexpected, error.InvalidUtf8, error.BadPathName, error.NetworkNotFound, error.DeviceBusy, => |e| return e, }; if (cleanup_dir_parent) |*d| d.close(); cleanup_dir_parent = iterable_dir; iterable_dir = new_dir; const result = dir_name_buf[0..entry.name.len]; @memcpy(result, entry.name); dir_name = result; continue :scan_dir; } else { if (iterable_dir.dir.deleteFile(entry.name)) { continue :dir_it; } else |err| switch (err) { error.FileNotFound => continue :dir_it, // Impossible because we do not pass any path separators. error.NotDir => unreachable, error.IsDir => { treat_as_dir = true; continue :handle_entry; }, error.AccessDenied, error.InvalidUtf8, error.SymLinkLoop, error.NameTooLong, error.SystemResources, error.ReadOnlyFileSystem, error.FileSystem, error.FileBusy, error.BadPathName, error.NetworkNotFound, error.Unexpected, => |e| return e, } } } } // Reached the end of the directory entries, which means we successfully deleted all of them. // Now to remove the directory itself. iterable_dir.close(); cleanup_dir = false; if (cleanup_dir_parent) |d| { d.dir.deleteDir(dir_name) catch |err| switch (err) { // These two things can happen due to file system race conditions. error.FileNotFound, error.DirNotEmpty => continue :start_over, else => |e| return e, }; continue :start_over; } else { self.deleteDir(sub_path) catch |err| switch (err) { error.FileNotFound => return, error.DirNotEmpty => continue :start_over, else => |e| return e, }; return; } } } } fn deleteTreeOpenInitialSubpath(self: Dir, sub_path: []const u8, kind_hint: File.Kind) !?IterableDir { return iterable_dir: { // Treat as a file by default var treat_as_dir = kind_hint == .directory; handle_entry: while (true) { if (treat_as_dir) { break :iterable_dir self.openIterableDir(sub_path, .{ .no_follow = true }) catch |err| switch (err) { error.NotDir => { treat_as_dir = false; continue :handle_entry; }, error.FileNotFound => { // That's fine, we were trying to remove this directory anyway. return null; }, error.InvalidHandle, error.AccessDenied, error.SymLinkLoop, error.ProcessFdQuotaExceeded, error.NameTooLong, error.SystemFdQuotaExceeded, error.NoDevice, error.SystemResources, error.Unexpected, error.InvalidUtf8, error.BadPathName, error.DeviceBusy, error.NetworkNotFound, => |e| return e, }; } else { if (self.deleteFile(sub_path)) { return null; } else |err| switch (err) { error.FileNotFound => return null, error.IsDir => { treat_as_dir = true; continue :handle_entry; }, error.AccessDenied, error.InvalidUtf8, error.SymLinkLoop, error.NameTooLong, error.SystemResources, error.ReadOnlyFileSystem, error.NotDir, error.FileSystem, error.FileBusy, error.BadPathName, error.NetworkNotFound, error.Unexpected, => |e| return e, } } } }; } |
writeFile()On successful delete, returns null. Writes content to the file system, creating a new file if it does not exist, truncating if it already exists. |
pub fn writeFile(self: Dir, sub_path: []const u8, data: []const u8) !void { var file = try self.createFile(sub_path, .{}); defer file.close(); try file.writeAll(data); } pub const AccessError = os.AccessError; |
access() Test accessing |
pub fn access(self: Dir, sub_path: []const u8, flags: File.OpenFlags) AccessError!void { if (builtin.os.tag == .windows) { const sub_path_w = os.windows.sliceToPrefixedFileW(self.fd, sub_path) catch |err| switch (err) { error.AccessDenied => return error.PermissionDenied, else => |e| return e, }; return self.accessW(sub_path_w.span().ptr, flags); } const path_c = try os.toPosixPath(sub_path); return self.accessZ(&path_c, flags); } |
accessZ() Same as |
pub fn accessZ(self: Dir, sub_path: [*:0]const u8, flags: File.OpenFlags) AccessError!void { if (builtin.os.tag == .windows) { const sub_path_w = os.windows.cStrToPrefixedFileW(self.fd, sub_path) catch |err| switch (err) { error.AccessDenied => return error.PermissionDenied, else => |e| return e, }; return self.accessW(sub_path_w.span().ptr, flags); } const os_mode = switch (flags.mode) { .read_only => @as(u32, os.F_OK), .write_only => @as(u32, os.W_OK), .read_write => @as(u32, os.R_OK | os.W_OK), }; const result = if (need_async_thread and flags.intended_io_mode != .blocking) std.event.Loop.instance.?.faccessatZ(self.fd, sub_path, os_mode, 0) else os.faccessatZ(self.fd, sub_path, os_mode, 0); return result; } |
accessW() Same as |
pub fn accessW(self: Dir, sub_path_w: [*:0]const u16, flags: File.OpenFlags) AccessError!void { _ = flags; return os.faccessatW(self.fd, sub_path_w, 0, 0); } |
updateFile() Check the file size, mtime, and mode of |
pub fn updateFile( source_dir: Dir, source_path: []const u8, dest_dir: Dir, dest_path: []const u8, options: CopyFileOptions, ) !PrevStatus { var src_file = try source_dir.openFile(source_path, .{}); defer src_file.close(); const src_stat = try src_file.stat(); const actual_mode = options.override_mode orelse src_stat.mode; check_dest_stat: { const dest_stat = blk: { var dest_file = dest_dir.openFile(dest_path, .{}) catch |err| switch (err) { error.FileNotFound => break :check_dest_stat, else => |e| return e, }; defer dest_file.close(); break :blk try dest_file.stat(); }; if (src_stat.size == dest_stat.size and src_stat.mtime == dest_stat.mtime and actual_mode == dest_stat.mode) { return PrevStatus.fresh; } } if (path.dirname(dest_path)) |dirname| { try dest_dir.makePath(dirname); } var atomic_file = try dest_dir.atomicFile(dest_path, .{ .mode = actual_mode }); defer atomic_file.deinit(); try atomic_file.file.writeFileAll(src_file, .{ .in_len = src_stat.size }); try atomic_file.file.updateTimes(src_stat.atime, src_stat.mtime); try atomic_file.finish(); return PrevStatus.stale; } pub const CopyFileError = File.OpenError || File.StatError || AtomicFile.InitError || CopyFileRawError || AtomicFile.FinishError; |
copyFile()Guaranteed to be atomic. On Linux, until https://patchwork.kernel.org/patch/9636735/ is merged and readily available, there is a possibility of power loss or application termination leaving temporary files present in the same directory as dest_path. |
pub fn copyFile(source_dir: Dir, source_path: []const u8, dest_dir: Dir, dest_path: []const u8, options: CopyFileOptions) CopyFileError!void { var in_file = try source_dir.openFile(source_path, .{}); defer in_file.close(); var size: ?u64 = null; const mode = options.override_mode orelse blk: { const st = try in_file.stat(); size = st.size; break :blk st.mode; }; var atomic_file = try dest_dir.atomicFile(dest_path, .{ .mode = mode }); defer atomic_file.deinit(); try copy_file(in_file.handle, atomic_file.file.handle, size); try atomic_file.finish(); } pub const AtomicFileOptions = struct { mode: File.Mode = File.default_mode, }; |
atomicFile() Directly access the |
pub fn atomicFile(self: Dir, dest_path: []const u8, options: AtomicFileOptions) !AtomicFile { if (path.dirname(dest_path)) |dirname| { const dir = try self.openDir(dirname, .{}); return AtomicFile.init(path.basename(dest_path), options.mode, dir, true); } else { return AtomicFile.init(dest_path, options.mode, self, false); } } pub const Stat = File.Stat; pub const StatError = File.StatError; |
stat() |
pub fn stat(self: Dir) StatError!Stat { const file: File = .{ .handle = self.fd, .capable_io_mode = .blocking, }; return file.stat(); } pub const StatFileError = File.OpenError || File.StatError || os.FStatAtError; |
statFile() Returns metadata for a file inside the directory. |
pub fn statFile(self: Dir, sub_path: []const u8) StatFileError!Stat { if (builtin.os.tag == .windows) { var file = try self.openFile(sub_path, .{}); defer file.close(); return file.stat(); } if (builtin.os.tag == .wasi and !builtin.link_libc) { const st = try os.fstatatWasi(self.fd, sub_path, os.wasi.LOOKUP_SYMLINK_FOLLOW); return Stat.fromSystem(st); } const st = try os.fstatat(self.fd, sub_path, 0); return Stat.fromSystem(st); } const Permissions = File.Permissions; pub const SetPermissionsError = File.SetPermissionsError; |
setPermissions() Sets permissions according to the provided |
pub fn setPermissions(self: Dir, permissions: Permissions) SetPermissionsError!void { const file: File = .{ .handle = self.fd, .capable_io_mode = .blocking, }; try file.setPermissions(permissions); } const Metadata = File.Metadata; pub const MetadataError = File.MetadataError; |
metadata() Returns a |
pub fn metadata(self: Dir) MetadataError!Metadata { const file: File = .{ .handle = self.fd, .capable_io_mode = .blocking, }; return try file.metadata(); } }; |
cwd() Returns a handle to the current working directory. It is not opened with iteration capability. Closing the returned |
pub fn cwd() Dir { if (builtin.os.tag == .windows) { return Dir{ .fd = os.windows.peb().ProcessParameters.CurrentDirectory.Handle }; } else if (builtin.os.tag == .wasi) { return std.options.wasiCwd(); } else { return Dir{ .fd = os.AT.FDCWD }; } } |
defaultWasiCwd() |
pub fn defaultWasiCwd() Dir { // Expect the first preopen to be current working directory. return .{ .fd = 3 }; } |
openDirAbsolute() Opens a directory at the given path. The directory is a system resource that remains open until |
pub fn openDirAbsolute(absolute_path: []const u8, flags: Dir.OpenDirOptions) File.OpenError!Dir { assert(path.isAbsolute(absolute_path)); return cwd().openDir(absolute_path, flags); } |
openDirAbsoluteZ() Same as |
pub fn openDirAbsoluteZ(absolute_path_c: [*:0]const u8, flags: Dir.OpenDirOptions) File.OpenError!Dir { assert(path.isAbsoluteZ(absolute_path_c)); return cwd().openDirZ(absolute_path_c, flags, false); } |
openDirAbsoluteW() Same as |
pub fn openDirAbsoluteW(absolute_path_c: [*:0]const u16, flags: Dir.OpenDirOptions) File.OpenError!Dir { assert(path.isAbsoluteWindowsW(absolute_path_c)); return cwd().openDirW(absolute_path_c, flags, false); } |
openIterableDirAbsolute() Opens a directory at the given path. The directory is a system resource that remains open until |
pub fn openIterableDirAbsolute(absolute_path: []const u8, flags: Dir.OpenDirOptions) File.OpenError!IterableDir { assert(path.isAbsolute(absolute_path)); return cwd().openIterableDir(absolute_path, flags); } |
openIterableDirAbsoluteZ() Same as |
pub fn openIterableDirAbsoluteZ(absolute_path_c: [*:0]const u8, flags: Dir.OpenDirOptions) File.OpenError!IterableDir { assert(path.isAbsoluteZ(absolute_path_c)); return IterableDir{ .dir = try cwd().openDirZ(absolute_path_c, flags, true) }; } |
openIterableDirAbsoluteW() Same as |
pub fn openIterableDirAbsoluteW(absolute_path_c: [*:0]const u16, flags: Dir.OpenDirOptions) File.OpenError!IterableDir { assert(path.isAbsoluteWindowsW(absolute_path_c)); return IterableDir{ .dir = try cwd().openDirW(absolute_path_c, flags, true) }; } |
openFileAbsolute() Opens a file for reading or writing, without attempting to create a new file, based on an absolute path. Call |
pub fn openFileAbsolute(absolute_path: []const u8, flags: File.OpenFlags) File.OpenError!File { assert(path.isAbsolute(absolute_path)); return cwd().openFile(absolute_path, flags); } |
openFileAbsoluteZ() Same as |
pub fn openFileAbsoluteZ(absolute_path_c: [*:0]const u8, flags: File.OpenFlags) File.OpenError!File { assert(path.isAbsoluteZ(absolute_path_c)); return cwd().openFileZ(absolute_path_c, flags); } |
openFileAbsoluteW() Same as |
pub fn openFileAbsoluteW(absolute_path_w: []const u16, flags: File.OpenFlags) File.OpenError!File { assert(path.isAbsoluteWindowsWTF16(absolute_path_w)); return cwd().openFileW(absolute_path_w, flags); } |
accessAbsolute() Test accessing |
pub fn accessAbsolute(absolute_path: []const u8, flags: File.OpenFlags) Dir.AccessError!void { assert(path.isAbsolute(absolute_path)); try cwd().access(absolute_path, flags); } |
accessAbsoluteZ() Same as |
pub fn accessAbsoluteZ(absolute_path: [*:0]const u8, flags: File.OpenFlags) Dir.AccessError!void { assert(path.isAbsoluteZ(absolute_path)); try cwd().accessZ(absolute_path, flags); } |
accessAbsoluteW() Same as |
pub fn accessAbsoluteW(absolute_path: [*:0]const u16, flags: File.OpenFlags) Dir.AccessError!void { assert(path.isAbsoluteWindowsW(absolute_path)); try cwd().accessW(absolute_path, flags); } |
createFileAbsolute() Creates, opens, or overwrites a file with write access, based on an absolute path. Call |
pub fn createFileAbsolute(absolute_path: []const u8, flags: File.CreateFlags) File.OpenError!File { assert(path.isAbsolute(absolute_path)); return cwd().createFile(absolute_path, flags); } |
createFileAbsoluteZ() Same as |
pub fn createFileAbsoluteZ(absolute_path_c: [*:0]const u8, flags: File.CreateFlags) File.OpenError!File { assert(path.isAbsoluteZ(absolute_path_c)); return cwd().createFileZ(absolute_path_c, flags); } |
createFileAbsoluteW() Same as |
pub fn createFileAbsoluteW(absolute_path_w: [*:0]const u16, flags: File.CreateFlags) File.OpenError!File { assert(path.isAbsoluteWindowsW(absolute_path_w)); return cwd().createFileW(absolute_path_w, flags); } |
deleteFileAbsolute() Delete a file name and possibly the file it refers to, based on an absolute path. Asserts that the path is absolute. See |
pub fn deleteFileAbsolute(absolute_path: []const u8) Dir.DeleteFileError!void { assert(path.isAbsolute(absolute_path)); return cwd().deleteFile(absolute_path); } |
deleteFileAbsoluteZ() Same as |
pub fn deleteFileAbsoluteZ(absolute_path_c: [*:0]const u8) Dir.DeleteFileError!void { assert(path.isAbsoluteZ(absolute_path_c)); return cwd().deleteFileZ(absolute_path_c); } |
deleteFileAbsoluteW() Same as |
pub fn deleteFileAbsoluteW(absolute_path_w: [*:0]const u16) Dir.DeleteFileError!void { assert(path.isAbsoluteWindowsW(absolute_path_w)); return cwd().deleteFileW(absolute_path_w); } |
deleteTreeAbsolute() Removes a symlink, file, or directory. This is equivalent to |
pub fn deleteTreeAbsolute(absolute_path: []const u8) !void { assert(path.isAbsolute(absolute_path)); const dirname = path.dirname(absolute_path) orelse return error{ CannotDeleteRootDirectory, }.CannotDeleteRootDirectory; var dir = try cwd().openDir(dirname, .{}); defer dir.close(); return dir.deleteTree(path.basename(absolute_path)); } |
readLinkAbsolute() Attempt to remove the root file system path. This error is unreachable if |
pub fn readLinkAbsolute(pathname: []const u8, buffer: *[MAX_PATH_BYTES]u8) ![]u8 { assert(path.isAbsolute(pathname)); return os.readlink(pathname, buffer); } |
readlinkAbsoluteW() Windows-only. Same as |
pub fn readlinkAbsoluteW(pathname_w: [*:0]const u16, buffer: *[MAX_PATH_BYTES]u8) ![]u8 { assert(path.isAbsoluteWindowsW(pathname_w)); return os.readlinkW(pathname_w, buffer); } |
readLinkAbsoluteZ() Same as |
pub fn readLinkAbsoluteZ(pathname_c: [*:0]const u8, buffer: *[MAX_PATH_BYTES]u8) ![]u8 { assert(path.isAbsoluteZ(pathname_c)); return os.readlinkZ(pathname_c, buffer); } |
SymLinkFlags Use with |
pub const SymLinkFlags = struct { is_directory: bool = false, }; |
symLinkAbsolute() Creates a symbolic link named |
pub fn symLinkAbsolute(target_path: []const u8, sym_link_path: []const u8, flags: SymLinkFlags) !void { assert(path.isAbsolute(target_path)); assert(path.isAbsolute(sym_link_path)); if (builtin.os.tag == .windows) { const target_path_w = try os.windows.sliceToPrefixedFileW(null, target_path); const sym_link_path_w = try os.windows.sliceToPrefixedFileW(null, sym_link_path); return os.windows.CreateSymbolicLink(null, sym_link_path_w.span(), target_path_w.span(), flags.is_directory); } return os.symlink(target_path, sym_link_path); } |
symLinkAbsoluteW() Windows-only. Same as |
pub fn symLinkAbsoluteW(target_path_w: []const u16, sym_link_path_w: []const u16, flags: SymLinkFlags) !void { assert(path.isAbsoluteWindowsWTF16(target_path_w)); assert(path.isAbsoluteWindowsWTF16(sym_link_path_w)); return os.windows.CreateSymbolicLink(null, sym_link_path_w, target_path_w, flags.is_directory); } |
symLinkAbsoluteZ() Same as |
pub fn symLinkAbsoluteZ(target_path_c: [*:0]const u8, sym_link_path_c: [*:0]const u8, flags: SymLinkFlags) !void { assert(path.isAbsoluteZ(target_path_c)); assert(path.isAbsoluteZ(sym_link_path_c)); if (builtin.os.tag == .windows) { const target_path_w = try os.windows.cStrToWin32PrefixedFileW(target_path_c); const sym_link_path_w = try os.windows.cStrToWin32PrefixedFileW(sym_link_path_c); return os.windows.CreateSymbolicLink(sym_link_path_w.span(), target_path_w.span(), flags.is_directory); } return os.symlinkZ(target_path_c, sym_link_path_c); } |
OpenSelfExeError |
pub const OpenSelfExeError = error{ SharingViolation, PathAlreadyExists, FileNotFound, AccessDenied, PipeBusy, NameTooLong, InvalidUtf8, BadPathName, Unexpected, } || os.OpenError || SelfExePathError || os.FlockError; |
openSelfExe()On Windows, file paths must be valid Unicode. On Windows, file paths cannot contain these characters: '/', '*', '?', '"', '<', '>', '|' |
pub fn openSelfExe(flags: File.OpenFlags) OpenSelfExeError!File { if (builtin.os.tag == .linux) { return openFileAbsoluteZ("/proc/self/exe", flags); } if (builtin.os.tag == .windows) { // If ImagePathName is a symlink, then it will contain the path of the symlink, // not the path that the symlink points to. However, because we are opening // the file, we can let the openFileW call follow the symlink for us. const image_path_unicode_string = &os.windows.peb().ProcessParameters.ImagePathName; const image_path_name = image_path_unicode_string.Buffer[0 .. image_path_unicode_string.Length / 2 :0]; const prefixed_path_w = try os.windows.wToPrefixedFileW(null, image_path_name); return cwd().openFileW(prefixed_path_w.span(), flags); } // Use of MAX_PATH_BYTES here is valid as the resulting path is immediately // opened with no modification. var buf: [MAX_PATH_BYTES]u8 = undefined; const self_exe_path = try selfExePath(&buf); buf[self_exe_path.len] = 0; return openFileAbsoluteZ(buf[0..self_exe_path.len :0].ptr, flags); } |
SelfExePathError |
pub const SelfExePathError = os.ReadLinkError || os.SysCtlError || os.RealPathError; |
selfExePathAlloc() |
pub fn selfExePathAlloc(allocator: Allocator) ![]u8 { // Use of MAX_PATH_BYTES here is justified as, at least on one tested Linux // system, readlink will completely fail to return a result larger than // PATH_MAX even if given a sufficiently large buffer. This makes it // fundamentally impossible to get the selfExePath of a program running in // a very deeply nested directory chain in this way. // TODO(#4812): Investigate other systems and whether it is possible to get // this path by trying larger and larger buffers until one succeeds. var buf: [MAX_PATH_BYTES]u8 = undefined; return allocator.dupe(u8, try selfExePath(&buf)); } |
selfExePath() Get the path to the current executable. Follows symlinks. If you only need the directory, use selfExeDirPath. If you only want an open file handle, use openSelfExe. This function may return an error if the current executable was deleted after spawning. Returned value is a slice of out_buffer. |
pub fn selfExePath(out_buffer: []u8) SelfExePathError![]u8 { if (is_darwin) { // Note that _NSGetExecutablePath() will return "a path" to // the executable not a "real path" to the executable. var symlink_path_buf: [MAX_PATH_BYTES:0]u8 = undefined; var u32_len: u32 = MAX_PATH_BYTES + 1; // include the sentinel const rc = std.c._NSGetExecutablePath(&symlink_path_buf, &u32_len); if (rc != 0) return error.NameTooLong; var real_path_buf: [MAX_PATH_BYTES]u8 = undefined; const real_path = try std.os.realpathZ(&symlink_path_buf, &real_path_buf); if (real_path.len > out_buffer.len) return error.NameTooLong; const result = out_buffer[0..real_path.len]; @memcpy(result, real_path); return result; } switch (builtin.os.tag) { .linux => return os.readlinkZ("/proc/self/exe", out_buffer), .solaris, .illumos => return os.readlinkZ("/proc/self/path/a.out", out_buffer), .freebsd, .dragonfly => { var mib = [4]c_int{ os.CTL.KERN, os.KERN.PROC, os.KERN.PROC_PATHNAME, -1 }; var out_len: usize = out_buffer.len; try os.sysctl(&mib, out_buffer.ptr, &out_len, null, 0); // TODO could this slice from 0 to out_len instead? return mem.sliceTo(out_buffer, 0); }, .netbsd => { var mib = [4]c_int{ os.CTL.KERN, os.KERN.PROC_ARGS, -1, os.KERN.PROC_PATHNAME }; var out_len: usize = out_buffer.len; try os.sysctl(&mib, out_buffer.ptr, &out_len, null, 0); // TODO could this slice from 0 to out_len instead? return mem.sliceTo(out_buffer, 0); }, .openbsd, .haiku => { // OpenBSD doesn't support getting the path of a running process, so try to guess it if (os.argv.len == 0) return error.FileNotFound; const argv0 = mem.span(os.argv[0]); if (mem.indexOf(u8, argv0, "/") != null) { // argv[0] is a path (relative or absolute): use realpath(3) directly var real_path_buf: [MAX_PATH_BYTES]u8 = undefined; const real_path = try os.realpathZ(os.argv[0], &real_path_buf); if (real_path.len > out_buffer.len) return error.NameTooLong; const result = out_buffer[0..real_path.len]; @memcpy(result, real_path); return result; } else if (argv0.len != 0) { // argv[0] is not empty (and not a path): search it inside PATH const PATH = std.os.getenvZ("PATH") orelse return error.FileNotFound; var path_it = mem.tokenizeScalar(u8, PATH, path.delimiter); while (path_it.next()) |a_path| { var resolved_path_buf: [MAX_PATH_BYTES - 1:0]u8 = undefined; const resolved_path = std.fmt.bufPrintZ(&resolved_path_buf, "{s}/{s}", .{ a_path, os.argv[0], }) catch continue; var real_path_buf: [MAX_PATH_BYTES]u8 = undefined; if (os.realpathZ(resolved_path, &real_path_buf)) |real_path| { // found a file, and hope it is the right file if (real_path.len > out_buffer.len) return error.NameTooLong; const result = out_buffer[0..real_path.len]; @memcpy(result, real_path); return result; } else |_| continue; } } return error.FileNotFound; }, .windows => { const image_path_unicode_string = &os.windows.peb().ProcessParameters.ImagePathName; const image_path_name = image_path_unicode_string.Buffer[0 .. image_path_unicode_string.Length / 2 :0]; // If ImagePathName is a symlink, then it will contain the path of the // symlink, not the path that the symlink points to. We want the path // that the symlink points to, though, so we need to get the realpath. const pathname_w = try os.windows.wToPrefixedFileW(null, image_path_name); return std.fs.cwd().realpathW(pathname_w.span(), out_buffer); }, else => @compileError("std.fs.selfExePath not supported for this target"), } } |
selfExePathW |
pub const selfExePathW = @compileError("deprecated; use selfExePath instead"); |
selfExeDirPathAlloc() |
pub fn selfExeDirPathAlloc(allocator: Allocator) ![]u8 { // Use of MAX_PATH_BYTES here is justified as, at least on one tested Linux // system, readlink will completely fail to return a result larger than // PATH_MAX even if given a sufficiently large buffer. This makes it // fundamentally impossible to get the selfExeDirPath of a program running // in a very deeply nested directory chain in this way. // TODO(#4812): Investigate other systems and whether it is possible to get // this path by trying larger and larger buffers until one succeeds. var buf: [MAX_PATH_BYTES]u8 = undefined; return allocator.dupe(u8, try selfExeDirPath(&buf)); } |
selfExeDirPath()Get the directory path that contains the current executable. Returned value is a slice of out_buffer. |
pub fn selfExeDirPath(out_buffer: []u8) SelfExePathError![]const u8 { const self_exe_path = try selfExePath(out_buffer); // Assume that the OS APIs return absolute paths, and therefore dirname // will not return null. return path.dirname(self_exe_path).?; } |
realpathAlloc() |
pub fn realpathAlloc(allocator: Allocator, pathname: []const u8) ![]u8 { // Use of MAX_PATH_BYTES here is valid as the realpath function does not // have a variant that takes an arbitrary-size buffer. // TODO(#4812): Consider reimplementing realpath or using the POSIX.1-2008 // NULL out parameter (GNU's canonicalize_file_name) to handle overelong // paths. musl supports passing NULL but restricts the output to PATH_MAX // anyway. var buf: [MAX_PATH_BYTES]u8 = undefined; return allocator.dupe(u8, try os.realpath(pathname, &buf)); } const CopyFileRawError = error{SystemResources} || os.CopyFileRangeError || os.SendFileError; // Transfer all the data between two file descriptors in the most efficient way. // The copy starts at offset 0, the initial offsets are preserved. // No metadata is transferred over. fn copy_file(fd_in: os.fd_t, fd_out: os.fd_t, maybe_size: ?u64) CopyFileRawError!void { if (comptime builtin.target.isDarwin()) { const rc = os.system.fcopyfile(fd_in, fd_out, null, os.system.COPYFILE_DATA); switch (os.errno(rc)) { .SUCCESS => return, .INVAL => unreachable, .NOMEM => return error.SystemResources, // The source file is not a directory, symbolic link, or regular file. // Try with the fallback path before giving up. .OPNOTSUPP => {}, else => |err| return os.unexpectedErrno(err), } } if (builtin.os.tag == .linux) { // Try copy_file_range first as that works at the FS level and is the // most efficient method (if available). var offset: u64 = 0; cfr_loop: while (true) { // The kernel checks the u64 value `offset+count` for overflow, use // a 32 bit value so that the syscall won't return EINVAL except for // impossibly large files (> 2^64-1 - 2^32-1). const amt = try os.copy_file_range(fd_in, offset, fd_out, offset, math.maxInt(u32), 0); // Terminate as soon as we have copied size bytes or no bytes if (maybe_size) |s| { if (s == amt) break :cfr_loop; } if (amt == 0) break :cfr_loop; offset += amt; } return; } // Sendfile is a zero-copy mechanism iff the OS supports it, otherwise the // fallback code will copy the contents chunk by chunk. const empty_iovec = [0]os.iovec_const{}; var offset: u64 = 0; sendfile_loop: while (true) { const amt = try os.sendfile(fd_out, fd_in, offset, 0, &empty_iovec, &empty_iovec, 0); // Terminate as soon as we have copied size bytes or no bytes if (maybe_size) |s| { if (s == amt) break :sendfile_loop; } if (amt == 0) break :sendfile_loop; offset += amt; } } test { if (builtin.os.tag != .wasi) { _ = &makeDirAbsolute; _ = &makeDirAbsoluteZ; _ = ©FileAbsolute; _ = &updateFileAbsolute; } _ = &Dir.copyFile; _ = @import("fs/test.zig"); _ = @import("fs/path.zig"); _ = @import("fs/file.zig"); _ = @import("fs/get_app_data_dir.zig"); _ = @import("fs/watch.zig"); } |
Generated by zstd-browse2 on 2023-11-04 14:12:28 -0400. |