zig/lib/std / linked_list.zig

const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;

SinglyLinkedList()

A singly-linked list is headed by a single forward pointer. The elements are singly-linked for minimum space and pointer manipulation overhead at the expense of O(n) removal for arbitrary elements. New elements can be added to the list after an existing element or at the head of the list. A singly-linked list may only be traversed in the forward direction. Singly-linked lists are ideal for applications with large datasets and few or no removals or for implementing a LIFO queue.

pub fn SinglyLinkedList(comptime T: type) type {
    return struct {
        const Self = @This();

        pub const Node = struct {
            next: ?*Node = null,
            data: T,

            pub const Data = T;

insertAfter()

Node inside the linked list wrapping the actual data. Insert a new node after the current one.

Arguments: new_node: Pointer to the new node to insert.

            pub fn insertAfter(node: *Node, new_node: *Node) void {
                new_node.next = node.next;
                node.next = new_node;
            }

removeNext()

Remove a node from the list.

Arguments: node: Pointer to the node to be removed. Returns: node removed

            pub fn removeNext(node: *Node) ?*Node {
                const next_node = node.next orelse return null;
                node.next = next_node.next;
                return next_node;
            }

findLast()

Iterate over the singly-linked list from this node, until the final node is found. This operation is O(N).

            pub fn findLast(node: *Node) *Node {
                var it = node;
                while (true) {
                    it = it.next orelse return it;
                }
            }

countChildren()

Iterate over each next node, returning the count of all nodes except the starting one. This operation is O(N).

            pub fn countChildren(node: *const Node) usize {
                var count: usize = 0;
                var it: ?*const Node = node.next;
                while (it) |n| : (it = n.next) {
                    count += 1;
                }
                return count;
            }

reverse()

Reverse the list starting from this node in-place. This operation is O(N).

            pub fn reverse(indirect: *?*Node) void {
                if (indirect.* == null) {
                    return;
                }
                var current: *Node = indirect.*.?;
                while (current.next) |next| {
                    current.next = next.next;
                    next.next = indirect.*;
                    indirect.* = next;
                }
            }
        };

        first: ?*Node = null,

prepend()

Insert a new node at the head.

Arguments: new_node: Pointer to the new node to insert.

        pub fn prepend(list: *Self, new_node: *Node) void {
            new_node.next = list.first;
            list.first = new_node;
        }

remove()

Remove a node from the list.

Arguments: node: Pointer to the node to be removed.

        pub fn remove(list: *Self, node: *Node) void {
            if (list.first == node) {
                list.first = node.next;
            } else {
                var current_elm = list.first.?;
                while (current_elm.next != node) {
                    current_elm = current_elm.next.?;
                }
                current_elm.next = node.next;
            }
        }

popFirst()

Remove and return the first node in the list.

Returns: A pointer to the first node in the list.

        pub fn popFirst(list: *Self) ?*Node {
            const first = list.first orelse return null;
            list.first = first.next;
            return first;
        }

len()

Iterate over all nodes, returning the count. This operation is O(N).

        pub fn len(list: Self) usize {
            if (list.first) |n| {
                return 1 + n.countChildren();
            } else {
                return 0;
            }
        }
    };
}

Test:

basic SinglyLinkedList test

test "basic SinglyLinkedList test" {
    const L = SinglyLinkedList(u32);
    var list = L{};

    try testing.expect(list.len() == 0);

    var one = L.Node{ .data = 1 };
    var two = L.Node{ .data = 2 };
    var three = L.Node{ .data = 3 };
    var four = L.Node{ .data = 4 };
    var five = L.Node{ .data = 5 };

    list.prepend(&two); // {2}
    two.insertAfter(&five); // {2, 5}
    list.prepend(&one); // {1, 2, 5}
    two.insertAfter(&three); // {1, 2, 3, 5}
    three.insertAfter(&four); // {1, 2, 3, 4, 5}

    try testing.expect(list.len() == 5);

    // Traverse forwards.
    {
        var it = list.first;
        var index: u32 = 1;
        while (it) |node| : (it = node.next) {
            try testing.expect(node.data == index);
            index += 1;
        }
    }

    _ = list.popFirst(); // {2, 3, 4, 5}
    _ = list.remove(&five); // {2, 3, 4}
    _ = two.removeNext(); // {2, 4}

    try testing.expect(list.first.?.data == 2);
    try testing.expect(list.first.?.next.?.data == 4);
    try testing.expect(list.first.?.next.?.next == null);

    L.Node.reverse(&list.first);

    try testing.expect(list.first.?.data == 4);
    try testing.expect(list.first.?.next.?.data == 2);
    try testing.expect(list.first.?.next.?.next == null);
}

DoublyLinkedList()

A doubly-linked list has a pair of pointers to both the head and tail of the list. List elements have pointers to both the previous and next elements in the sequence. The list can be traversed both forward and backward. Some operations that take linear O(n) time with a singly-linked list can be done without traversal in constant O(1) time with a doubly-linked list:

- Removing an element. - Inserting a new element before an existing element. - Pushing or popping an element from the end of the list.

pub fn DoublyLinkedList(comptime T: type) type {
    return struct {
        const Self = @This();

        pub const Node = struct {
            prev: ?*Node = null,
            next: ?*Node = null,
            data: T,
        };

        first: ?*Node = null,
        last: ?*Node = null,
        len: usize = 0,

insertAfter()

Node inside the linked list wrapping the actual data. Insert a new node after an existing one.

Arguments: node: Pointer to a node in the list. new_node: Pointer to the new node to insert.

        pub fn insertAfter(list: *Self, node: *Node, new_node: *Node) void {
            new_node.prev = node;
            if (node.next) |next_node| {
                // Intermediate node.
                new_node.next = next_node;
                next_node.prev = new_node;
            } else {
                // Last element of the list.
                new_node.next = null;
                list.last = new_node;
            }
            node.next = new_node;

            list.len += 1;
        }

insertBefore()

Insert a new node before an existing one.

Arguments: node: Pointer to a node in the list. new_node: Pointer to the new node to insert.

        pub fn insertBefore(list: *Self, node: *Node, new_node: *Node) void {
            new_node.next = node;
            if (node.prev) |prev_node| {
                // Intermediate node.
                new_node.prev = prev_node;
                prev_node.next = new_node;
            } else {
                // First element of the list.
                new_node.prev = null;
                list.first = new_node;
            }
            node.prev = new_node;

            list.len += 1;
        }

concatByMoving()

Concatenate list2 onto the end of list1, removing all entries from the former.

Arguments: list1: the list to concatenate onto list2: the list to be concatenated

        pub fn concatByMoving(list1: *Self, list2: *Self) void {
            const l2_first = list2.first orelse return;
            if (list1.last) |l1_last| {
                l1_last.next = list2.first;
                l2_first.prev = list1.last;
                list1.len += list2.len;
            } else {
                // list1 was empty
                list1.first = list2.first;
                list1.len = list2.len;
            }
            list1.last = list2.last;
            list2.first = null;
            list2.last = null;
            list2.len = 0;
        }

append()

Insert a new node at the end of the list.

Arguments: new_node: Pointer to the new node to insert.

        pub fn append(list: *Self, new_node: *Node) void {
            if (list.last) |last| {
                // Insert after last.
                list.insertAfter(last, new_node);
            } else {
                // Empty list.
                list.prepend(new_node);
            }
        }

prepend()

Insert a new node at the beginning of the list.

Arguments: new_node: Pointer to the new node to insert.

        pub fn prepend(list: *Self, new_node: *Node) void {
            if (list.first) |first| {
                // Insert before first.
                list.insertBefore(first, new_node);
            } else {
                // Empty list.
                list.first = new_node;
                list.last = new_node;
                new_node.prev = null;
                new_node.next = null;

                list.len = 1;
            }
        }

remove()

Remove a node from the list.

Arguments: node: Pointer to the node to be removed.

        pub fn remove(list: *Self, node: *Node) void {
            if (node.prev) |prev_node| {
                // Intermediate node.
                prev_node.next = node.next;
            } else {
                // First element of the list.
                list.first = node.next;
            }

            if (node.next) |next_node| {
                // Intermediate node.
                next_node.prev = node.prev;
            } else {
                // Last element of the list.
                list.last = node.prev;
            }

            list.len -= 1;
            assert(list.len == 0 or (list.first != null and list.last != null));
        }

pop()

Remove and return the last node in the list.

Returns: A pointer to the last node in the list.

        pub fn pop(list: *Self) ?*Node {
            const last = list.last orelse return null;
            list.remove(last);
            return last;
        }

popFirst()

Remove and return the first node in the list.

Returns: A pointer to the first node in the list.

        pub fn popFirst(list: *Self) ?*Node {
            const first = list.first orelse return null;
            list.remove(first);
            return first;
        }
    };
}

Test:

basic DoublyLinkedList test

test "basic DoublyLinkedList test" {
    const L = DoublyLinkedList(u32);
    var list = L{};

    var one = L.Node{ .data = 1 };
    var two = L.Node{ .data = 2 };
    var three = L.Node{ .data = 3 };
    var four = L.Node{ .data = 4 };
    var five = L.Node{ .data = 5 };

    list.append(&two); // {2}
    list.append(&five); // {2, 5}
    list.prepend(&one); // {1, 2, 5}
    list.insertBefore(&five, &four); // {1, 2, 4, 5}
    list.insertAfter(&two, &three); // {1, 2, 3, 4, 5}

    // Traverse forwards.
    {
        var it = list.first;
        var index: u32 = 1;
        while (it) |node| : (it = node.next) {
            try testing.expect(node.data == index);
            index += 1;
        }
    }

    // Traverse backwards.
    {
        var it = list.last;
        var index: u32 = 1;
        while (it) |node| : (it = node.prev) {
            try testing.expect(node.data == (6 - index));
            index += 1;
        }
    }

    _ = list.popFirst(); // {2, 3, 4, 5}
    _ = list.pop(); // {2, 3, 4}
    list.remove(&three); // {2, 4}

    try testing.expect(list.first.?.data == 2);
    try testing.expect(list.last.?.data == 4);
    try testing.expect(list.len == 2);
}

Test:

DoublyLinkedList concatenation

test "DoublyLinkedList concatenation" {
    const L = DoublyLinkedList(u32);
    var list1 = L{};
    var list2 = L{};

    var one = L.Node{ .data = 1 };
    var two = L.Node{ .data = 2 };
    var three = L.Node{ .data = 3 };
    var four = L.Node{ .data = 4 };
    var five = L.Node{ .data = 5 };

    list1.append(&one);
    list1.append(&two);
    list2.append(&three);
    list2.append(&four);
    list2.append(&five);

    list1.concatByMoving(&list2);

    try testing.expect(list1.last == &five);
    try testing.expect(list1.len == 5);
    try testing.expect(list2.first == null);
    try testing.expect(list2.last == null);
    try testing.expect(list2.len == 0);

    // Traverse forwards.
    {
        var it = list1.first;
        var index: u32 = 1;
        while (it) |node| : (it = node.next) {
            try testing.expect(node.data == index);
            index += 1;
        }
    }

    // Traverse backwards.
    {
        var it = list1.last;
        var index: u32 = 1;
        while (it) |node| : (it = node.prev) {
            try testing.expect(node.data == (6 - index));
            index += 1;
        }
    }

    // Swap them back, this verifies that concatenating to an empty list works.
    list2.concatByMoving(&list1);

    // Traverse forwards.
    {
        var it = list2.first;
        var index: u32 = 1;
        while (it) |node| : (it = node.next) {
            try testing.expect(node.data == index);
            index += 1;
        }
    }

    // Traverse backwards.
    {
        var it = list2.last;
        var index: u32 = 1;
        while (it) |node| : (it = node.prev) {
            try testing.expect(node.data == (6 - index));
            index += 1;
        }
    }
}