| 
   | 
const std = @import("../std.zig");
const testing = std.testing;
const math = std.math;
 | 
| abscomplex/abs.zig | 
pub const abs = @import("complex/abs.zig").abs;
 | 
| acoshcomplex/acosh.zig | 
pub const acosh = @import("complex/acosh.zig").acosh;
 | 
| acoscomplex/acos.zig | 
pub const acos = @import("complex/acos.zig").acos;
 | 
| argcomplex/arg.zig | 
pub const arg = @import("complex/arg.zig").arg;
 | 
| asinhcomplex/asinh.zig | 
pub const asinh = @import("complex/asinh.zig").asinh;
 | 
| asincomplex/asin.zig | 
pub const asin = @import("complex/asin.zig").asin;
 | 
| atanhcomplex/atanh.zig | 
pub const atanh = @import("complex/atanh.zig").atanh;
 | 
| atancomplex/atan.zig | 
pub const atan = @import("complex/atan.zig").atan;
 | 
| conjcomplex/conj.zig | 
pub const conj = @import("complex/conj.zig").conj;
 | 
| coshcomplex/cosh.zig | 
pub const cosh = @import("complex/cosh.zig").cosh;
 | 
| coscomplex/cos.zig | 
pub const cos = @import("complex/cos.zig").cos;
 | 
| expcomplex/exp.zig | 
pub const exp = @import("complex/exp.zig").exp;
 | 
| logcomplex/log.zig | 
pub const log = @import("complex/log.zig").log;
 | 
| powcomplex/pow.zig | 
pub const pow = @import("complex/pow.zig").pow;
 | 
| projcomplex/proj.zig | 
pub const proj = @import("complex/proj.zig").proj;
 | 
| sinhcomplex/sinh.zig | 
pub const sinh = @import("complex/sinh.zig").sinh;
 | 
| sincomplex/sin.zig | 
pub const sin = @import("complex/sin.zig").sin;
 | 
| sqrtcomplex/sqrt.zig | 
pub const sqrt = @import("complex/sqrt.zig").sqrt;
 | 
| tanhcomplex/tanh.zig | 
pub const tanh = @import("complex/tanh.zig").tanh;
 | 
| tancomplex/tan.zig | 
pub const tan = @import("complex/tan.zig").tan;
 | 
| Complex()A complex number consisting of a real an imaginary part. T must be a floating-point value. | 
pub fn Complex(comptime T: type) type {
    return struct {
        const Self = @This();
        re: T,
        im: T,
 | 
| init()Real part. Imaginary part. Create a new Complex number from the given real and imaginary parts. | 
        pub fn init(re: T, im: T) Self {
            return Self{
                .re = re,
                .im = im,
            };
        }
 | 
| add()Returns the sum of two complex numbers. | 
        pub fn add(self: Self, other: Self) Self {
            return Self{
                .re = self.re + other.re,
                .im = self.im + other.im,
            };
        }
 | 
| sub()Returns the subtraction of two complex numbers. | 
        pub fn sub(self: Self, other: Self) Self {
            return Self{
                .re = self.re - other.re,
                .im = self.im - other.im,
            };
        }
 | 
| mul()Returns the product of two complex numbers. | 
        pub fn mul(self: Self, other: Self) Self {
            return Self{
                .re = self.re * other.re - self.im * other.im,
                .im = self.im * other.re + self.re * other.im,
            };
        }
 | 
| div()Returns the quotient of two complex numbers. | 
        pub fn div(self: Self, other: Self) Self {
            const re_num = self.re * other.re + self.im * other.im;
            const im_num = self.im * other.re - self.re * other.im;
            const den = other.re * other.re + other.im * other.im;
            return Self{
                .re = re_num / den,
                .im = im_num / den,
            };
        }
 | 
| conjugate()Returns the complex conjugate of a number. | 
        pub fn conjugate(self: Self) Self {
            return Self{
                .re = self.re,
                .im = -self.im,
            };
        }
 | 
| neg()Returns the negation of a complex number. | 
        pub fn neg(self: Self) Self {
            return Self{
                .re = -self.re,
                .im = -self.im,
            };
        }
 | 
| mulbyi()Returns the product of complex number and i=sqrt(-1) | 
        pub fn mulbyi(self: Self) Self {
            return Self{
                .re = -self.im,
                .im = self.re,
            };
        }
 | 
| reciprocal()Returns the reciprocal of a complex number. | 
        pub fn reciprocal(self: Self) Self {
            const m = self.re * self.re + self.im * self.im;
            return Self{
                .re = self.re / m,
                .im = -self.im / m,
            };
        }
 | 
| magnitude()Returns the magnitude of a complex number. | 
        pub fn magnitude(self: Self) T {
            return @sqrt(self.re * self.re + self.im * self.im);
        }
    };
}
const epsilon = 0.0001;
 | 
| Test:complex.add | 
test "complex.add" {
    const a = Complex(f32).init(5, 3);
    const b = Complex(f32).init(2, 7);
    const c = a.add(b);
    try testing.expect(c.re == 7 and c.im == 10);
}
 | 
| Test:complex.sub | 
test "complex.sub" {
    const a = Complex(f32).init(5, 3);
    const b = Complex(f32).init(2, 7);
    const c = a.sub(b);
    try testing.expect(c.re == 3 and c.im == -4);
}
 | 
| Test:complex.mul | 
test "complex.mul" {
    const a = Complex(f32).init(5, 3);
    const b = Complex(f32).init(2, 7);
    const c = a.mul(b);
    try testing.expect(c.re == -11 and c.im == 41);
}
 | 
| Test:complex.div | 
test "complex.div" {
    const a = Complex(f32).init(5, 3);
    const b = Complex(f32).init(2, 7);
    const c = a.div(b);
    try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 31) / 53, epsilon) and
        math.approxEqAbs(f32, c.im, @as(f32, -29) / 53, epsilon));
}
 | 
| Test:complex.conjugate | 
test "complex.conjugate" {
    const a = Complex(f32).init(5, 3);
    const c = a.conjugate();
    try testing.expect(c.re == 5 and c.im == -3);
}
 | 
| Test:complex.neg | 
test "complex.neg" {
    const a = Complex(f32).init(5, 3);
    const c = a.neg();
    try testing.expect(c.re == -5 and c.im == -3);
}
 | 
| Test:complex.mulbyi | 
test "complex.mulbyi" {
    const a = Complex(f32).init(5, 3);
    const c = a.mulbyi();
    try testing.expect(c.re == -3 and c.im == 5);
}
 | 
| Test:complex.reciprocal | 
test "complex.reciprocal" {
    const a = Complex(f32).init(5, 3);
    const c = a.reciprocal();
    try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 5) / 34, epsilon) and
        math.approxEqAbs(f32, c.im, @as(f32, -3) / 34, epsilon));
}
 | 
| Test:complex.magnitude | 
test "complex.magnitude" {
    const a = Complex(f32).init(5, 3);
    const c = a.magnitude();
    try testing.expect(math.approxEqAbs(f32, c, 5.83095, epsilon));
}
test {
    _ = @import("complex/abs.zig");
    _ = @import("complex/acosh.zig");
    _ = @import("complex/acos.zig");
    _ = @import("complex/arg.zig");
    _ = @import("complex/asinh.zig");
    _ = @import("complex/asin.zig");
    _ = @import("complex/atanh.zig");
    _ = @import("complex/atan.zig");
    _ = @import("complex/conj.zig");
    _ = @import("complex/cosh.zig");
    _ = @import("complex/cos.zig");
    _ = @import("complex/exp.zig");
    _ = @import("complex/log.zig");
    _ = @import("complex/pow.zig");
    _ = @import("complex/proj.zig");
    _ = @import("complex/sinh.zig");
    _ = @import("complex/sin.zig");
    _ = @import("complex/sqrt.zig");
    _ = @import("complex/tanh.zig");
    _ = @import("complex/tan.zig");
}
 | 
| Generated by zstd-browse2 on 2023-11-04 14:12:22 -0400. |