|
const std = @import("../std.zig");
const testing = std.testing;
const math = std.math;
|
abscomplex/abs.zig |
pub const abs = @import("complex/abs.zig").abs;
|
acoshcomplex/acosh.zig |
pub const acosh = @import("complex/acosh.zig").acosh;
|
acoscomplex/acos.zig |
pub const acos = @import("complex/acos.zig").acos;
|
argcomplex/arg.zig |
pub const arg = @import("complex/arg.zig").arg;
|
asinhcomplex/asinh.zig |
pub const asinh = @import("complex/asinh.zig").asinh;
|
asincomplex/asin.zig |
pub const asin = @import("complex/asin.zig").asin;
|
atanhcomplex/atanh.zig |
pub const atanh = @import("complex/atanh.zig").atanh;
|
atancomplex/atan.zig |
pub const atan = @import("complex/atan.zig").atan;
|
conjcomplex/conj.zig |
pub const conj = @import("complex/conj.zig").conj;
|
coshcomplex/cosh.zig |
pub const cosh = @import("complex/cosh.zig").cosh;
|
coscomplex/cos.zig |
pub const cos = @import("complex/cos.zig").cos;
|
expcomplex/exp.zig |
pub const exp = @import("complex/exp.zig").exp;
|
logcomplex/log.zig |
pub const log = @import("complex/log.zig").log;
|
powcomplex/pow.zig |
pub const pow = @import("complex/pow.zig").pow;
|
projcomplex/proj.zig |
pub const proj = @import("complex/proj.zig").proj;
|
sinhcomplex/sinh.zig |
pub const sinh = @import("complex/sinh.zig").sinh;
|
sincomplex/sin.zig |
pub const sin = @import("complex/sin.zig").sin;
|
sqrtcomplex/sqrt.zig |
pub const sqrt = @import("complex/sqrt.zig").sqrt;
|
tanhcomplex/tanh.zig |
pub const tanh = @import("complex/tanh.zig").tanh;
|
tancomplex/tan.zig |
pub const tan = @import("complex/tan.zig").tan;
|
Complex()A complex number consisting of a real an imaginary part. T must be a floating-point value. |
pub fn Complex(comptime T: type) type {
return struct {
const Self = @This();
re: T,
im: T,
|
init()Real part. Imaginary part. Create a new Complex number from the given real and imaginary parts. |
pub fn init(re: T, im: T) Self {
return Self{
.re = re,
.im = im,
};
}
|
add()Returns the sum of two complex numbers. |
pub fn add(self: Self, other: Self) Self {
return Self{
.re = self.re + other.re,
.im = self.im + other.im,
};
}
|
sub()Returns the subtraction of two complex numbers. |
pub fn sub(self: Self, other: Self) Self {
return Self{
.re = self.re - other.re,
.im = self.im - other.im,
};
}
|
mul()Returns the product of two complex numbers. |
pub fn mul(self: Self, other: Self) Self {
return Self{
.re = self.re * other.re - self.im * other.im,
.im = self.im * other.re + self.re * other.im,
};
}
|
div()Returns the quotient of two complex numbers. |
pub fn div(self: Self, other: Self) Self {
const re_num = self.re * other.re + self.im * other.im;
const im_num = self.im * other.re - self.re * other.im;
const den = other.re * other.re + other.im * other.im;
return Self{
.re = re_num / den,
.im = im_num / den,
};
}
|
conjugate()Returns the complex conjugate of a number. |
pub fn conjugate(self: Self) Self {
return Self{
.re = self.re,
.im = -self.im,
};
}
|
neg()Returns the negation of a complex number. |
pub fn neg(self: Self) Self {
return Self{
.re = -self.re,
.im = -self.im,
};
}
|
mulbyi()Returns the product of complex number and i=sqrt(-1) |
pub fn mulbyi(self: Self) Self {
return Self{
.re = -self.im,
.im = self.re,
};
}
|
reciprocal()Returns the reciprocal of a complex number. |
pub fn reciprocal(self: Self) Self {
const m = self.re * self.re + self.im * self.im;
return Self{
.re = self.re / m,
.im = -self.im / m,
};
}
|
magnitude()Returns the magnitude of a complex number. |
pub fn magnitude(self: Self) T {
return @sqrt(self.re * self.re + self.im * self.im);
}
};
}
const epsilon = 0.0001;
|
Test:complex.add |
test "complex.add" {
const a = Complex(f32).init(5, 3);
const b = Complex(f32).init(2, 7);
const c = a.add(b);
try testing.expect(c.re == 7 and c.im == 10);
}
|
Test:complex.sub |
test "complex.sub" {
const a = Complex(f32).init(5, 3);
const b = Complex(f32).init(2, 7);
const c = a.sub(b);
try testing.expect(c.re == 3 and c.im == -4);
}
|
Test:complex.mul |
test "complex.mul" {
const a = Complex(f32).init(5, 3);
const b = Complex(f32).init(2, 7);
const c = a.mul(b);
try testing.expect(c.re == -11 and c.im == 41);
}
|
Test:complex.div |
test "complex.div" {
const a = Complex(f32).init(5, 3);
const b = Complex(f32).init(2, 7);
const c = a.div(b);
try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 31) / 53, epsilon) and
math.approxEqAbs(f32, c.im, @as(f32, -29) / 53, epsilon));
}
|
Test:complex.conjugate |
test "complex.conjugate" {
const a = Complex(f32).init(5, 3);
const c = a.conjugate();
try testing.expect(c.re == 5 and c.im == -3);
}
|
Test:complex.neg |
test "complex.neg" {
const a = Complex(f32).init(5, 3);
const c = a.neg();
try testing.expect(c.re == -5 and c.im == -3);
}
|
Test:complex.mulbyi |
test "complex.mulbyi" {
const a = Complex(f32).init(5, 3);
const c = a.mulbyi();
try testing.expect(c.re == -3 and c.im == 5);
}
|
Test:complex.reciprocal |
test "complex.reciprocal" {
const a = Complex(f32).init(5, 3);
const c = a.reciprocal();
try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 5) / 34, epsilon) and
math.approxEqAbs(f32, c.im, @as(f32, -3) / 34, epsilon));
}
|
Test:complex.magnitude |
test "complex.magnitude" {
const a = Complex(f32).init(5, 3);
const c = a.magnitude();
try testing.expect(math.approxEqAbs(f32, c, 5.83095, epsilon));
}
test {
_ = @import("complex/abs.zig");
_ = @import("complex/acosh.zig");
_ = @import("complex/acos.zig");
_ = @import("complex/arg.zig");
_ = @import("complex/asinh.zig");
_ = @import("complex/asin.zig");
_ = @import("complex/atanh.zig");
_ = @import("complex/atan.zig");
_ = @import("complex/conj.zig");
_ = @import("complex/cosh.zig");
_ = @import("complex/cos.zig");
_ = @import("complex/exp.zig");
_ = @import("complex/log.zig");
_ = @import("complex/pow.zig");
_ = @import("complex/proj.zig");
_ = @import("complex/sinh.zig");
_ = @import("complex/sin.zig");
_ = @import("complex/sqrt.zig");
_ = @import("complex/tanh.zig");
_ = @import("complex/tan.zig");
}
|
| Generated by zstd-browse2 on 2023-11-04 14:12:22 -0400. |