zig/lib/std / mem/Allocator.zig

The standard memory allocation interface.


const std = @import("../std.zig");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;
const Allocator = @This();
const builtin = @import("builtin");

Error

pub const Error = error{OutOfMemory};

Log2Align

pub const Log2Align = math.Log2Int(usize);

// The type erased pointer to the allocator implementation
ptr: *anyopaque,
vtable: *const VTable,

VTable

pub const VTable = struct {
    alloc: *const fn (ctx: *anyopaque, len: usize, ptr_align: u8, ret_addr: usize) ?[*]u8,

    resize: *const fn (ctx: *anyopaque, buf: []u8, buf_align: u8, new_len: usize, ret_addr: usize) bool,

    free: *const fn (ctx: *anyopaque, buf: []u8, buf_align: u8, ret_addr: usize) void,
};

noResize()

Attempt to allocate exactly len bytes aligned to 1 << ptr_align.

ret_addr is optionally provided as the first return address of the allocation call stack. If the value is 0 it means no return address has been provided. Attempt to expand or shrink memory in place. buf.len must equal the length requested from the most recent successful call to alloc or resize. buf_align must equal the same value that was passed as the ptr_align parameter to the original alloc call.

A result of true indicates the resize was successful and the allocation now has the same address but a size of new_len. false indicates the resize could not be completed without moving the allocation to a different address.

new_len must be greater than zero.

ret_addr is optionally provided as the first return address of the allocation call stack. If the value is 0 it means no return address has been provided. Free and invalidate a buffer.

buf.len must equal the most recent length returned by alloc or given to a successful resize call.

buf_align must equal the same value that was passed as the ptr_align parameter to the original alloc call.

ret_addr is optionally provided as the first return address of the allocation call stack. If the value is 0 it means no return address has been provided.

pub fn noResize(
    self: *anyopaque,
    buf: []u8,
    log2_buf_align: u8,
    new_len: usize,
    ret_addr: usize,
) bool {
    _ = self;
    _ = buf;
    _ = log2_buf_align;
    _ = new_len;
    _ = ret_addr;
    return false;
}

noFree()

pub fn noFree(
    self: *anyopaque,
    buf: []u8,
    log2_buf_align: u8,
    ret_addr: usize,
) void {
    _ = self;
    _ = buf;
    _ = log2_buf_align;
    _ = ret_addr;
}

rawAlloc()

This function is not intended to be called except from within the implementation of an Allocator

pub inline fn rawAlloc(self: Allocator, len: usize, ptr_align: u8, ret_addr: usize) ?[*]u8 {
    return self.vtable.alloc(self.ptr, len, ptr_align, ret_addr);
}

rawResize()

This function is not intended to be called except from within the implementation of an Allocator

pub inline fn rawResize(self: Allocator, buf: []u8, log2_buf_align: u8, new_len: usize, ret_addr: usize) bool {
    return self.vtable.resize(self.ptr, buf, log2_buf_align, new_len, ret_addr);
}

rawFree()

This function is not intended to be called except from within the implementation of an Allocator

pub inline fn rawFree(self: Allocator, buf: []u8, log2_buf_align: u8, ret_addr: usize) void {
    return self.vtable.free(self.ptr, buf, log2_buf_align, ret_addr);
}

create()

Returns a pointer to undefined memory. Call destroy with the result to free the memory.

pub fn create(self: Allocator, comptime T: type) Error!*T {
    if (@sizeOf(T) == 0) return @as(*T, @ptrFromInt(math.maxInt(usize)));
    const ptr: *T = @ptrCast(try self.allocBytesWithAlignment(@alignOf(T), @sizeOf(T), @returnAddress()));
    return ptr;
}

destroy()

ptr should be the return value of create, or otherwise have the same address and alignment property.

pub fn destroy(self: Allocator, ptr: anytype) void {
    const info = @typeInfo(@TypeOf(ptr)).Pointer;
    if (info.size != .One) @compileError("ptr must be a single item pointer");
    const T = info.child;
    if (@sizeOf(T) == 0) return;
    const non_const_ptr = @as([*]u8, @ptrCast(@constCast(ptr)));
    self.rawFree(non_const_ptr[0..@sizeOf(T)], log2a(info.alignment), @returnAddress());
}

alloc()

Allocates an array of n items of type T and sets all the items to undefined. Depending on the Allocator implementation, it may be required to call free once the memory is no longer needed, to avoid a resource leak. If the Allocator implementation is unknown, then correct code will call free when done.

For allocating a single item, see create.

pub fn alloc(self: Allocator, comptime T: type, n: usize) Error![]T {
    return self.allocAdvancedWithRetAddr(T, null, n, @returnAddress());
}

allocWithOptions()

pub fn allocWithOptions(
    self: Allocator,
    comptime Elem: type,
    n: usize,
    comptime optional_alignment: ?u29,
    comptime optional_sentinel: ?Elem,
) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) {
    return self.allocWithOptionsRetAddr(Elem, n, optional_alignment, optional_sentinel, @returnAddress());
}

allocWithOptionsRetAddr()

null means naturally aligned

pub fn allocWithOptionsRetAddr(
    self: Allocator,
    comptime Elem: type,
    n: usize,
    comptime optional_alignment: ?u29,
    comptime optional_sentinel: ?Elem,
    return_address: usize,
) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) {
    if (optional_sentinel) |sentinel| {
        const ptr = try self.allocAdvancedWithRetAddr(Elem, optional_alignment, n + 1, return_address);
        ptr[n] = sentinel;
        return ptr[0..n :sentinel];
    } else {
        return self.allocAdvancedWithRetAddr(Elem, optional_alignment, n, return_address);
    }
}

fn AllocWithOptionsPayload(comptime Elem: type, comptime alignment: ?u29, comptime sentinel: ?Elem) type {
    if (sentinel) |s| {
        return [:s]align(alignment orelse @alignOf(Elem)) Elem;
    } else {
        return []align(alignment orelse @alignOf(Elem)) Elem;
    }
}

allocSentinel()

null means naturally aligned Allocates an array of n + 1 items of type T and sets the first n items to undefined and the last item to sentinel. Depending on the Allocator implementation, it may be required to call free once the memory is no longer needed, to avoid a resource leak. If the Allocator implementation is unknown, then correct code will call free when done.

For allocating a single item, see create.

pub fn allocSentinel(
    self: Allocator,
    comptime Elem: type,
    n: usize,
    comptime sentinel: Elem,
) Error![:sentinel]Elem {
    return self.allocWithOptionsRetAddr(Elem, n, null, sentinel, @returnAddress());
}

alignedAlloc()

pub fn alignedAlloc(
    self: Allocator,
    comptime T: type,
    comptime alignment: ?u29,
    n: usize,
) Error![]align(alignment orelse @alignOf(T)) T {
    return self.allocAdvancedWithRetAddr(T, alignment, n, @returnAddress());
}

allocAdvancedWithRetAddr()

null means naturally aligned

pub inline fn allocAdvancedWithRetAddr(
    self: Allocator,
    comptime T: type,
    comptime alignment: ?u29,
    n: usize,
    return_address: usize,
) Error![]align(alignment orelse @alignOf(T)) T {
    const a = alignment orelse @alignOf(T);
    const ptr: [*]align(a) T = @ptrCast(try self.allocWithSizeAndAlignment(@sizeOf(T), a, n, return_address));
    return ptr[0..n];
}

fn allocWithSizeAndAlignment(self: Allocator, comptime size: usize, comptime alignment: u29, n: usize, return_address: usize) Error![*]align(alignment) u8 {
    const byte_count = math.mul(usize, size, n) catch return Error.OutOfMemory;
    return self.allocBytesWithAlignment(alignment, byte_count, return_address);
}

fn allocBytesWithAlignment(self: Allocator, comptime alignment: u29, byte_count: usize, return_address: usize) Error![*]align(alignment) u8 {
    // The Zig Allocator interface is not intended to solve alignments beyond
    // the minimum OS page size. For these use cases, the caller must use OS
    // APIs directly.
    comptime assert(alignment <= mem.page_size);

    if (byte_count == 0) {
        const ptr = comptime std.mem.alignBackward(usize, math.maxInt(usize), alignment);
        return @as([*]align(alignment) u8, @ptrFromInt(ptr));
    }

    const byte_ptr = self.rawAlloc(byte_count, log2a(alignment), return_address) orelse return Error.OutOfMemory;
    // TODO: https://github.com/ziglang/zig/issues/4298
    @memset(byte_ptr[0..byte_count], undefined);
    return @as([*]align(alignment) u8, @alignCast(byte_ptr));
}

resize()

null means naturally aligned Requests to modify the size of an allocation. It is guaranteed to not move the pointer, however the allocator implementation may refuse the resize request by returning false.

pub fn resize(self: Allocator, old_mem: anytype, new_n: usize) bool {
    const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
    const T = Slice.child;
    if (new_n == 0) {
        self.free(old_mem);
        return true;
    }
    if (old_mem.len == 0) {
        return false;
    }
    const old_byte_slice = mem.sliceAsBytes(old_mem);
    // I would like to use saturating multiplication here, but LLVM cannot lower it
    // on WebAssembly: https://github.com/ziglang/zig/issues/9660
    //const new_byte_count = new_n *| @sizeOf(T);
    const new_byte_count = math.mul(usize, @sizeOf(T), new_n) catch return false;
    return self.rawResize(old_byte_slice, log2a(Slice.alignment), new_byte_count, @returnAddress());
}

realloc()

This function requests a new byte size for an existing allocation, which can be larger, smaller, or the same size as the old memory allocation. If new_n is 0, this is the same as free and it always succeeds.

pub fn realloc(self: Allocator, old_mem: anytype, new_n: usize) t: {
    const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
    break :t Error![]align(Slice.alignment) Slice.child;
} {
    return self.reallocAdvanced(old_mem, new_n, @returnAddress());
}

reallocAdvanced()

pub fn reallocAdvanced(
    self: Allocator,
    old_mem: anytype,
    new_n: usize,
    return_address: usize,
) t: {
    const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
    break :t Error![]align(Slice.alignment) Slice.child;
} {
    const Slice = @typeInfo(@TypeOf(old_mem)).Pointer;
    const T = Slice.child;
    if (old_mem.len == 0) {
        return self.allocAdvancedWithRetAddr(T, Slice.alignment, new_n, return_address);
    }
    if (new_n == 0) {
        self.free(old_mem);
        const ptr = comptime std.mem.alignBackward(usize, math.maxInt(usize), Slice.alignment);
        return @as([*]align(Slice.alignment) T, @ptrFromInt(ptr))[0..0];
    }

    const old_byte_slice = mem.sliceAsBytes(old_mem);
    const byte_count = math.mul(usize, @sizeOf(T), new_n) catch return Error.OutOfMemory;
    // Note: can't set shrunk memory to undefined as memory shouldn't be modified on realloc failure
    if (mem.isAligned(@intFromPtr(old_byte_slice.ptr), Slice.alignment)) {
        if (self.rawResize(old_byte_slice, log2a(Slice.alignment), byte_count, return_address)) {
            const new_bytes: []align(Slice.alignment) u8 = @alignCast(old_byte_slice.ptr[0..byte_count]);
            return mem.bytesAsSlice(T, new_bytes);
        }
    }

    const new_mem = self.rawAlloc(byte_count, log2a(Slice.alignment), return_address) orelse
        return error.OutOfMemory;
    const copy_len = @min(byte_count, old_byte_slice.len);
    @memcpy(new_mem[0..copy_len], old_byte_slice[0..copy_len]);
    // TODO https://github.com/ziglang/zig/issues/4298
    @memset(old_byte_slice, undefined);
    self.rawFree(old_byte_slice, log2a(Slice.alignment), return_address);

    const new_bytes: []align(Slice.alignment) u8 = @alignCast(new_mem[0..byte_count]);
    return mem.bytesAsSlice(T, new_bytes);
}

free()

Free an array allocated with alloc. To free a single item, see destroy.

pub fn free(self: Allocator, memory: anytype) void {
    const Slice = @typeInfo(@TypeOf(memory)).Pointer;
    const bytes = mem.sliceAsBytes(memory);
    const bytes_len = bytes.len + if (Slice.sentinel != null) @sizeOf(Slice.child) else 0;
    if (bytes_len == 0) return;
    const non_const_ptr = @constCast(bytes.ptr);
    // TODO: https://github.com/ziglang/zig/issues/4298
    @memset(non_const_ptr[0..bytes_len], undefined);
    self.rawFree(non_const_ptr[0..bytes_len], log2a(Slice.alignment), @returnAddress());
}

dupe()

Copies m to newly allocated memory. Caller owns the memory.

pub fn dupe(allocator: Allocator, comptime T: type, m: []const T) Error![]T {
    const new_buf = try allocator.alloc(T, m.len);
    @memcpy(new_buf, m);
    return new_buf;
}

dupeZ()

Copies m to newly allocated memory, with a null-terminated element. Caller owns the memory.

pub fn dupeZ(allocator: Allocator, comptime T: type, m: []const T) Error![:0]T {
    const new_buf = try allocator.alloc(T, m.len + 1);
    @memcpy(new_buf[0..m.len], m);
    new_buf[m.len] = 0;
    return new_buf[0..m.len :0];
}

inline fn log2a(x: anytype) switch (@typeInfo(@TypeOf(x))) {
    .Int => math.Log2Int(@TypeOf(x)),
    .ComptimeInt => comptime_int,
    else => @compileError("int please"),
} {
    switch (@typeInfo(@TypeOf(x))) {
        .Int => return math.log2_int(@TypeOf(x), x),
        .ComptimeInt => return math.log2(x),
        else => @compileError("bad"),
    }
}