|
const std = @import("../../std.zig"); const errno = getErrno; const unexpectedErrno = std.os.unexpectedErrno; const expectEqual = std.testing.expectEqual; const expectError = std.testing.expectError; const expect = std.testing.expect; const linux = std.os.linux; const fd_t = linux.fd_t; const pid_t = linux.pid_t; const getErrno = linux.getErrno; |
btfbpf/btf.zig |
pub const btf = @import("bpf/btf.zig"); |
kernbpf/kern.zig |
pub const kern = @import("bpf/kern.zig"); // instruction classes |
LD |
pub const LD = 0x00; |
LDX |
pub const LDX = 0x01; |
ST |
pub const ST = 0x02; |
STX |
pub const STX = 0x03; |
ALU |
pub const ALU = 0x04; |
JMP |
pub const JMP = 0x05; |
RET |
pub const RET = 0x06; |
MISC |
pub const MISC = 0x07; |
W32-bit |
pub const W = 0x00; |
H16-bit |
pub const H = 0x08; |
B8-bit |
pub const B = 0x10; |
DW64-bit |
pub const DW = 0x18; |
IMM |
pub const IMM = 0x00; |
ABS |
pub const ABS = 0x20; |
IND |
pub const IND = 0x40; |
MEM |
pub const MEM = 0x60; |
LEN |
pub const LEN = 0x80; |
MSH |
pub const MSH = 0xa0; // alu fields |
ADD |
pub const ADD = 0x00; |
SUB |
pub const SUB = 0x10; |
MUL |
pub const MUL = 0x20; |
DIV |
pub const DIV = 0x30; |
OR |
pub const OR = 0x40; |
AND |
pub const AND = 0x50; |
LSH |
pub const LSH = 0x60; |
RSH |
pub const RSH = 0x70; |
NEG |
pub const NEG = 0x80; |
MOD |
pub const MOD = 0x90; |
XOR |
pub const XOR = 0xa0; // jmp fields |
JA |
pub const JA = 0x00; |
JEQ |
pub const JEQ = 0x10; |
JGT |
pub const JGT = 0x20; |
JGE |
pub const JGE = 0x30; |
JSET |
pub const JSET = 0x40; //#define BPF_SRC(code) ((code) & 0x08) |
K |
pub const K = 0x00; |
X |
pub const X = 0x08; |
MAXINSNS |
pub const MAXINSNS = 4096; // instruction classes |
JMP32jmp mode in word width |
pub const JMP32 = 0x06; |
ALU64alu mode in double word width |
pub const ALU64 = 0x07; // ld/ldx fields |
XADDexclusive add |
pub const XADD = 0xc0; // alu/jmp fields |
MOVmov reg to reg |
pub const MOV = 0xb0; |
ARSHsign extending arithmetic shift right */ |
pub const ARSH = 0xc0; // change endianness of a register |
ENDflags for endianness conversion: |
pub const END = 0xd0; |
TO_LEconvert to little-endian */ |
pub const TO_LE = 0x00; |
TO_BEconvert to big-endian |
pub const TO_BE = 0x08; |
FROM_LE |
pub const FROM_LE = TO_LE; |
FROM_BE |
pub const FROM_BE = TO_BE; // jmp encodings |
JNEjump != * |
pub const JNE = 0x50; |
JLTLT is unsigned, '<' |
pub const JLT = 0xa0; |
JLELE is unsigned, '<=' * |
pub const JLE = 0xb0; |
JSGTSGT is signed '>', GT in x86 |
pub const JSGT = 0x60; |
JSGESGE is signed '>=', GE in x86 |
pub const JSGE = 0x70; |
JSLTSLT is signed, '<' |
pub const JSLT = 0xc0; |
JSLESLE is signed, '<=' |
pub const JSLE = 0xd0; |
CALLfunction call |
pub const CALL = 0x80; |
EXITfunction return |
pub const EXIT = 0x90; |
F_ALLOW_OVERRIDEFlag for prog_attach command. If a sub-cgroup installs some bpf program, the program in this cgroup yields to sub-cgroup program. |
pub const F_ALLOW_OVERRIDE = 0x1; |
F_ALLOW_MULTIFlag for prog_attach command. If a sub-cgroup installs some bpf program, that cgroup program gets run in addition to the program in this cgroup. |
pub const F_ALLOW_MULTI = 0x2; |
F_REPLACEFlag for prog_attach command. |
pub const F_REPLACE = 0x4; |
F_STRICT_ALIGNMENTIf BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the verifier will perform strict alignment checking as if the kernel has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, and NET_IP_ALIGN defined to 2. |
pub const F_STRICT_ALIGNMENT = 0x1; |
F_ANY_ALIGNMENT If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the verifier will allow any alignment whatsoever. On platforms with strict alignment requirements for loads ands stores (such as sparc and mips) the verifier validates that all loads and stores provably follow this requirement. This flag turns that checking and enforcement off. |
pub const F_ANY_ALIGNMENT = 0x2; |
F_TEST_RND_HI32 BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose. Verifier does sub-register def/use analysis and identifies instructions whose def only matters for low 32-bit, high 32-bit is never referenced later through implicit zero extension. Therefore verifier notifies JIT back-ends that it is safe to ignore clearing high 32-bit for these instructions. This saves some back-ends a lot of code-gen. However such optimization is not necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends hence hasn't used verifier's analysis result. But, we really want to have a way to be able to verify the correctness of the described optimization on x86_64 on which testsuites are frequently exercised. |
pub const F_TEST_RND_HI32 = 0x4; |
F_SLEEPABLEIf BPF_F_SLEEPABLE is used in BPF_PROG_LOAD command, the verifier will restrict map and helper usage for such programs. Sleepable BPF programs can only be attached to hooks where kernel execution context allows sleeping. Such programs are allowed to use helpers that may sleep like bpf_copy_from_user(). |
pub const F_SLEEPABLE = 0x10; |
PSEUDO_MAP_FDWhen BPF ldimm64's insn[0].src_reg != 0 then this can have two extensions: insn[0].src_reg: BPF_PSEUDO_MAP_FD BPF_PSEUDO_MAP_VALUE insn[0].imm: map fd map fd insn[1].imm: 0 offset into value insn[0].off: 0 0 insn[1].off: 0 0 ldimm64 rewrite: address of map address of map[0]+offset verifier type: CONST_PTR_TO_MAP PTR_TO_MAP_VALUE |
pub const PSEUDO_MAP_FD = 1; |
PSEUDO_MAP_VALUE |
pub const PSEUDO_MAP_VALUE = 2; |
PSEUDO_CALLwhen bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative offset to another bpf function |
pub const PSEUDO_CALL = 1; |
ANYflag for BPF_MAP_UPDATE_ELEM command. create new element or update existing |
pub const ANY = 0; |
NOEXISTflag for BPF_MAP_UPDATE_ELEM command. create new element if it didn't exist |
pub const NOEXIST = 1; |
EXISTflag for BPF_MAP_UPDATE_ELEM command. update existing element |
pub const EXIST = 2; |
F_LOCKflag for BPF_MAP_UPDATE_ELEM command. spin_lock-ed map_lookup/map_update |
pub const F_LOCK = 4; |
BPF_F_NO_PREALLOCflag for BPF_MAP_CREATE command */ |
pub const BPF_F_NO_PREALLOC = 0x1; |
BPF_F_NO_COMMON_LRUflag for BPF_MAP_CREATE command. Instead of having one common LRU list in the BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list which can scale and perform better. Note, the LRU nodes (including free nodes) cannot be moved across different LRU lists. |
pub const BPF_F_NO_COMMON_LRU = 0x2; |
BPF_F_NUMA_NODEflag for BPF_MAP_CREATE command. Specify numa node during map creation |
pub const BPF_F_NUMA_NODE = 0x4; |
BPF_F_RDONLYflag for BPF_MAP_CREATE command. Flags for BPF object read access from syscall side |
pub const BPF_F_RDONLY = 0x8; |
BPF_F_WRONLYflag for BPF_MAP_CREATE command. Flags for BPF object write access from syscall side |
pub const BPF_F_WRONLY = 0x10; |
BPF_F_STACK_BUILD_IDflag for BPF_MAP_CREATE command. Flag for stack_map, store build_id+offset instead of pointer |
pub const BPF_F_STACK_BUILD_ID = 0x20; |
BPF_F_ZERO_SEEDflag for BPF_MAP_CREATE command. Zero-initialize hash function seed. This should only be used for testing. |
pub const BPF_F_ZERO_SEED = 0x40; |
BPF_F_RDONLY_PROGflag for BPF_MAP_CREATE command Flags for accessing BPF object from program side. |
pub const BPF_F_RDONLY_PROG = 0x80; |
BPF_F_WRONLY_PROGflag for BPF_MAP_CREATE command. Flags for accessing BPF object from program side. |
pub const BPF_F_WRONLY_PROG = 0x100; |
BPF_F_CLONEflag for BPF_MAP_CREATE command. Clone map from listener for newly accepted socket |
pub const BPF_F_CLONE = 0x200; |
BPF_F_MMAPABLEflag for BPF_MAP_CREATE command. Enable memory-mapping BPF map |
pub const BPF_F_MMAPABLE = 0x400; |
HelperThese values correspond to "syscalls" within the BPF program's environment, each one is documented in std.os.linux.BPF.kern |
pub const Helper = enum(i32) { unspec, map_lookup_elem, map_update_elem, map_delete_elem, probe_read, ktime_get_ns, trace_printk, get_prandom_u32, get_smp_processor_id, skb_store_bytes, l3_csum_replace, l4_csum_replace, tail_call, clone_redirect, get_current_pid_tgid, get_current_uid_gid, get_current_comm, get_cgroup_classid, skb_vlan_push, skb_vlan_pop, skb_get_tunnel_key, skb_set_tunnel_key, perf_event_read, redirect, get_route_realm, perf_event_output, skb_load_bytes, get_stackid, csum_diff, skb_get_tunnel_opt, skb_set_tunnel_opt, skb_change_proto, skb_change_type, skb_under_cgroup, get_hash_recalc, get_current_task, probe_write_user, current_task_under_cgroup, skb_change_tail, skb_pull_data, csum_update, set_hash_invalid, get_numa_node_id, skb_change_head, xdp_adjust_head, probe_read_str, get_socket_cookie, get_socket_uid, set_hash, setsockopt, skb_adjust_room, redirect_map, sk_redirect_map, sock_map_update, xdp_adjust_meta, perf_event_read_value, perf_prog_read_value, getsockopt, override_return, sock_ops_cb_flags_set, msg_redirect_map, msg_apply_bytes, msg_cork_bytes, msg_pull_data, bind, xdp_adjust_tail, skb_get_xfrm_state, get_stack, skb_load_bytes_relative, fib_lookup, sock_hash_update, msg_redirect_hash, sk_redirect_hash, lwt_push_encap, lwt_seg6_store_bytes, lwt_seg6_adjust_srh, lwt_seg6_action, rc_repeat, rc_keydown, skb_cgroup_id, get_current_cgroup_id, get_local_storage, sk_select_reuseport, skb_ancestor_cgroup_id, sk_lookup_tcp, sk_lookup_udp, sk_release, map_push_elem, map_pop_elem, map_peek_elem, msg_push_data, msg_pop_data, rc_pointer_rel, spin_lock, spin_unlock, sk_fullsock, tcp_sock, skb_ecn_set_ce, get_listener_sock, skc_lookup_tcp, tcp_check_syncookie, sysctl_get_name, sysctl_get_current_value, sysctl_get_new_value, sysctl_set_new_value, strtol, strtoul, sk_storage_get, sk_storage_delete, send_signal, tcp_gen_syncookie, skb_output, probe_read_user, probe_read_kernel, probe_read_user_str, probe_read_kernel_str, tcp_send_ack, send_signal_thread, jiffies64, read_branch_records, get_ns_current_pid_tgid, xdp_output, get_netns_cookie, get_current_ancestor_cgroup_id, sk_assign, ktime_get_boot_ns, seq_printf, seq_write, sk_cgroup_id, sk_ancestor_cgroup_id, ringbuf_output, ringbuf_reserve, ringbuf_submit, ringbuf_discard, ringbuf_query, csum_level, skc_to_tcp6_sock, skc_to_tcp_sock, skc_to_tcp_timewait_sock, skc_to_tcp_request_sock, skc_to_udp6_sock, get_task_stack, _, }; // TODO: determine that this is the expected bit layout for both little and big // endian systems |
Insna single BPF instruction |
pub const Insn = packed struct { code: u8, dst: u4, src: u4, off: i16, imm: i32, pub const Reg = enum(u4) { r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 }; const Source = enum(u1) { reg, imm }; const Mode = enum(u8) { imm = IMM, abs = ABS, ind = IND, mem = MEM, len = LEN, msh = MSH, }; pub const AluOp = enum(u8) { add = ADD, sub = SUB, mul = MUL, div = DIV, alu_or = OR, alu_and = AND, lsh = LSH, rsh = RSH, neg = NEG, mod = MOD, xor = XOR, mov = MOV, arsh = ARSH, }; pub const Size = enum(u8) { byte = B, half_word = H, word = W, double_word = DW, }; pub const JmpOp = enum(u8) { ja = JA, jeq = JEQ, jgt = JGT, jge = JGE, jset = JSET, jlt = JLT, jle = JLE, jne = JNE, jsgt = JSGT, jsge = JSGE, jslt = JSLT, jsle = JSLE, }; const ImmOrReg = union(Source) { reg: Reg, imm: i32, }; fn imm_reg(code: u8, dst: Reg, src: anytype, off: i16) Insn { const imm_or_reg = if (@TypeOf(src) == Reg or @typeInfo(@TypeOf(src)) == .EnumLiteral) ImmOrReg{ .reg = @as(Reg, src) } else ImmOrReg{ .imm = src }; const src_type: u8 = switch (imm_or_reg) { .imm => K, .reg => X, }; return Insn{ .code = code | src_type, .dst = @intFromEnum(dst), .src = switch (imm_or_reg) { .imm => 0, .reg => |r| @intFromEnum(r), }, .off = off, .imm = switch (imm_or_reg) { .imm => |i| i, .reg => 0, }, }; } |
alu()r0 - r9 are general purpose 64-bit registers, r10 points to the stack frame |
pub fn alu(comptime width: comptime_int, op: AluOp, dst: Reg, src: anytype) Insn { const width_bitfield = switch (width) { 32 => ALU, 64 => ALU64, else => @compileError("width must be 32 or 64"), }; return imm_reg(width_bitfield | @intFromEnum(op), dst, src, 0); } |
mov() |
pub fn mov(dst: Reg, src: anytype) Insn { return alu(64, .mov, dst, src); } |
add() |
pub fn add(dst: Reg, src: anytype) Insn { return alu(64, .add, dst, src); } |
sub() |
pub fn sub(dst: Reg, src: anytype) Insn { return alu(64, .sub, dst, src); } |
mul() |
pub fn mul(dst: Reg, src: anytype) Insn { return alu(64, .mul, dst, src); } |
div() |
pub fn div(dst: Reg, src: anytype) Insn { return alu(64, .div, dst, src); } |
alu_or() |
pub fn alu_or(dst: Reg, src: anytype) Insn { return alu(64, .alu_or, dst, src); } |
alu_and() |
pub fn alu_and(dst: Reg, src: anytype) Insn { return alu(64, .alu_and, dst, src); } |
lsh() |
pub fn lsh(dst: Reg, src: anytype) Insn { return alu(64, .lsh, dst, src); } |
rsh() |
pub fn rsh(dst: Reg, src: anytype) Insn { return alu(64, .rsh, dst, src); } |
neg() |
pub fn neg(dst: Reg) Insn { return alu(64, .neg, dst, 0); } |
mod() |
pub fn mod(dst: Reg, src: anytype) Insn { return alu(64, .mod, dst, src); } |
xor() |
pub fn xor(dst: Reg, src: anytype) Insn { return alu(64, .xor, dst, src); } |
arsh() |
pub fn arsh(dst: Reg, src: anytype) Insn { return alu(64, .arsh, dst, src); } |
jmp() |
pub fn jmp(op: JmpOp, dst: Reg, src: anytype, off: i16) Insn { return imm_reg(JMP | @intFromEnum(op), dst, src, off); } |
ja() |
pub fn ja(off: i16) Insn { return jmp(.ja, .r0, 0, off); } |
jeq() |
pub fn jeq(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jeq, dst, src, off); } |
jgt() |
pub fn jgt(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jgt, dst, src, off); } |
jge() |
pub fn jge(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jge, dst, src, off); } |
jlt() |
pub fn jlt(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jlt, dst, src, off); } |
jle() |
pub fn jle(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jle, dst, src, off); } |
jset() |
pub fn jset(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jset, dst, src, off); } |
jne() |
pub fn jne(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jne, dst, src, off); } |
jsgt() |
pub fn jsgt(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jsgt, dst, src, off); } |
jsge() |
pub fn jsge(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jsge, dst, src, off); } |
jslt() |
pub fn jslt(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jslt, dst, src, off); } |
jsle() |
pub fn jsle(dst: Reg, src: anytype, off: i16) Insn { return jmp(.jsle, dst, src, off); } |
xadd() |
pub fn xadd(dst: Reg, src: Reg) Insn { return Insn{ .code = STX | XADD | DW, .dst = @intFromEnum(dst), .src = @intFromEnum(src), .off = 0, .imm = 0, }; } fn ld(mode: Mode, size: Size, dst: Reg, src: Reg, imm: i32) Insn { return Insn{ .code = @intFromEnum(mode) | @intFromEnum(size) | LD, .dst = @intFromEnum(dst), .src = @intFromEnum(src), .off = 0, .imm = imm, }; } |
ld_abs() |
pub fn ld_abs(size: Size, dst: Reg, src: Reg, imm: i32) Insn { return ld(.abs, size, dst, src, imm); } |
ld_ind() |
pub fn ld_ind(size: Size, dst: Reg, src: Reg, imm: i32) Insn { return ld(.ind, size, dst, src, imm); } |
ldx() |
pub fn ldx(size: Size, dst: Reg, src: Reg, off: i16) Insn { return Insn{ .code = MEM | @intFromEnum(size) | LDX, .dst = @intFromEnum(dst), .src = @intFromEnum(src), .off = off, .imm = 0, }; } fn ld_imm_impl1(dst: Reg, src: Reg, imm: u64) Insn { return Insn{ .code = LD | DW | IMM, .dst = @intFromEnum(dst), .src = @intFromEnum(src), .off = 0, .imm = @as(i32, @intCast(@as(u32, @truncate(imm)))), }; } fn ld_imm_impl2(imm: u64) Insn { return Insn{ .code = 0, .dst = 0, .src = 0, .off = 0, .imm = @as(i32, @intCast(@as(u32, @truncate(imm >> 32)))), }; } |
ld_dw1() |
pub fn ld_dw1(dst: Reg, imm: u64) Insn { return ld_imm_impl1(dst, .r0, imm); } |
ld_dw2() |
pub fn ld_dw2(imm: u64) Insn { return ld_imm_impl2(imm); } |
ld_map_fd1() |
pub fn ld_map_fd1(dst: Reg, map_fd: fd_t) Insn { return ld_imm_impl1(dst, @as(Reg, @enumFromInt(PSEUDO_MAP_FD)), @as(u64, @intCast(map_fd))); } |
ld_map_fd2() |
pub fn ld_map_fd2(map_fd: fd_t) Insn { return ld_imm_impl2(@as(u64, @intCast(map_fd))); } |
st() |
pub fn st(size: Size, dst: Reg, off: i16, imm: i32) Insn { return Insn{ .code = MEM | @intFromEnum(size) | ST, .dst = @intFromEnum(dst), .src = 0, .off = off, .imm = imm, }; } |
stx() |
pub fn stx(size: Size, dst: Reg, off: i16, src: Reg) Insn { return Insn{ .code = MEM | @intFromEnum(size) | STX, .dst = @intFromEnum(dst), .src = @intFromEnum(src), .off = off, .imm = 0, }; } fn endian_swap(endian: std.builtin.Endian, comptime size: Size, dst: Reg) Insn { return Insn{ .code = switch (endian) { .big => 0xdc, .little => 0xd4, }, .dst = @intFromEnum(dst), .src = 0, .off = 0, .imm = switch (size) { .byte => @compileError("can't swap a single byte"), .half_word => 16, .word => 32, .double_word => 64, }, }; } |
le() |
pub fn le(comptime size: Size, dst: Reg) Insn { return endian_swap(.little, size, dst); } |
be() |
pub fn be(comptime size: Size, dst: Reg) Insn { return endian_swap(.big, size, dst); } |
call() |
pub fn call(helper: Helper) Insn { return Insn{ .code = JMP | CALL, .dst = 0, .src = 0, .off = 0, .imm = @intFromEnum(helper), }; } |
exit()exit BPF program |
pub fn exit() Insn { return Insn{ .code = JMP | EXIT, .dst = 0, .src = 0, .off = 0, .imm = 0, }; } }; |
Test:insn bitsize |
test "insn bitsize" { try expectEqual(@bitSizeOf(Insn), 64); } fn expect_opcode(code: u8, insn: Insn) !void { try expectEqual(code, insn.code); } // The opcodes were grabbed from https://github.com/iovisor/bpf-docs/blob/master/eBPF.md |
Test:opcodes |
test "opcodes" { // instructions that have a name that end with 1 or 2 are consecutive for // loading 64-bit immediates (imm is only 32 bits wide) // alu instructions try expect_opcode(0x07, Insn.add(.r1, 0)); try expect_opcode(0x0f, Insn.add(.r1, .r2)); try expect_opcode(0x17, Insn.sub(.r1, 0)); try expect_opcode(0x1f, Insn.sub(.r1, .r2)); try expect_opcode(0x27, Insn.mul(.r1, 0)); try expect_opcode(0x2f, Insn.mul(.r1, .r2)); try expect_opcode(0x37, Insn.div(.r1, 0)); try expect_opcode(0x3f, Insn.div(.r1, .r2)); try expect_opcode(0x47, Insn.alu_or(.r1, 0)); try expect_opcode(0x4f, Insn.alu_or(.r1, .r2)); try expect_opcode(0x57, Insn.alu_and(.r1, 0)); try expect_opcode(0x5f, Insn.alu_and(.r1, .r2)); try expect_opcode(0x67, Insn.lsh(.r1, 0)); try expect_opcode(0x6f, Insn.lsh(.r1, .r2)); try expect_opcode(0x77, Insn.rsh(.r1, 0)); try expect_opcode(0x7f, Insn.rsh(.r1, .r2)); try expect_opcode(0x87, Insn.neg(.r1)); try expect_opcode(0x97, Insn.mod(.r1, 0)); try expect_opcode(0x9f, Insn.mod(.r1, .r2)); try expect_opcode(0xa7, Insn.xor(.r1, 0)); try expect_opcode(0xaf, Insn.xor(.r1, .r2)); try expect_opcode(0xb7, Insn.mov(.r1, 0)); try expect_opcode(0xbf, Insn.mov(.r1, .r2)); try expect_opcode(0xc7, Insn.arsh(.r1, 0)); try expect_opcode(0xcf, Insn.arsh(.r1, .r2)); // atomic instructions: might be more of these not documented in the wild try expect_opcode(0xdb, Insn.xadd(.r1, .r2)); // TODO: byteswap instructions try expect_opcode(0xd4, Insn.le(.half_word, .r1)); try expectEqual(@as(i32, @intCast(16)), Insn.le(.half_word, .r1).imm); try expect_opcode(0xd4, Insn.le(.word, .r1)); try expectEqual(@as(i32, @intCast(32)), Insn.le(.word, .r1).imm); try expect_opcode(0xd4, Insn.le(.double_word, .r1)); try expectEqual(@as(i32, @intCast(64)), Insn.le(.double_word, .r1).imm); try expect_opcode(0xdc, Insn.be(.half_word, .r1)); try expectEqual(@as(i32, @intCast(16)), Insn.be(.half_word, .r1).imm); try expect_opcode(0xdc, Insn.be(.word, .r1)); try expectEqual(@as(i32, @intCast(32)), Insn.be(.word, .r1).imm); try expect_opcode(0xdc, Insn.be(.double_word, .r1)); try expectEqual(@as(i32, @intCast(64)), Insn.be(.double_word, .r1).imm); // memory instructions try expect_opcode(0x18, Insn.ld_dw1(.r1, 0)); try expect_opcode(0x00, Insn.ld_dw2(0)); // loading a map fd try expect_opcode(0x18, Insn.ld_map_fd1(.r1, 0)); try expectEqual(@as(u4, @intCast(PSEUDO_MAP_FD)), Insn.ld_map_fd1(.r1, 0).src); try expect_opcode(0x00, Insn.ld_map_fd2(0)); try expect_opcode(0x38, Insn.ld_abs(.double_word, .r1, .r2, 0)); try expect_opcode(0x20, Insn.ld_abs(.word, .r1, .r2, 0)); try expect_opcode(0x28, Insn.ld_abs(.half_word, .r1, .r2, 0)); try expect_opcode(0x30, Insn.ld_abs(.byte, .r1, .r2, 0)); try expect_opcode(0x58, Insn.ld_ind(.double_word, .r1, .r2, 0)); try expect_opcode(0x40, Insn.ld_ind(.word, .r1, .r2, 0)); try expect_opcode(0x48, Insn.ld_ind(.half_word, .r1, .r2, 0)); try expect_opcode(0x50, Insn.ld_ind(.byte, .r1, .r2, 0)); try expect_opcode(0x79, Insn.ldx(.double_word, .r1, .r2, 0)); try expect_opcode(0x61, Insn.ldx(.word, .r1, .r2, 0)); try expect_opcode(0x69, Insn.ldx(.half_word, .r1, .r2, 0)); try expect_opcode(0x71, Insn.ldx(.byte, .r1, .r2, 0)); try expect_opcode(0x62, Insn.st(.word, .r1, 0, 0)); try expect_opcode(0x6a, Insn.st(.half_word, .r1, 0, 0)); try expect_opcode(0x72, Insn.st(.byte, .r1, 0, 0)); try expect_opcode(0x63, Insn.stx(.word, .r1, 0, .r2)); try expect_opcode(0x6b, Insn.stx(.half_word, .r1, 0, .r2)); try expect_opcode(0x73, Insn.stx(.byte, .r1, 0, .r2)); try expect_opcode(0x7b, Insn.stx(.double_word, .r1, 0, .r2)); // branch instructions try expect_opcode(0x05, Insn.ja(0)); try expect_opcode(0x15, Insn.jeq(.r1, 0, 0)); try expect_opcode(0x1d, Insn.jeq(.r1, .r2, 0)); try expect_opcode(0x25, Insn.jgt(.r1, 0, 0)); try expect_opcode(0x2d, Insn.jgt(.r1, .r2, 0)); try expect_opcode(0x35, Insn.jge(.r1, 0, 0)); try expect_opcode(0x3d, Insn.jge(.r1, .r2, 0)); try expect_opcode(0xa5, Insn.jlt(.r1, 0, 0)); try expect_opcode(0xad, Insn.jlt(.r1, .r2, 0)); try expect_opcode(0xb5, Insn.jle(.r1, 0, 0)); try expect_opcode(0xbd, Insn.jle(.r1, .r2, 0)); try expect_opcode(0x45, Insn.jset(.r1, 0, 0)); try expect_opcode(0x4d, Insn.jset(.r1, .r2, 0)); try expect_opcode(0x55, Insn.jne(.r1, 0, 0)); try expect_opcode(0x5d, Insn.jne(.r1, .r2, 0)); try expect_opcode(0x65, Insn.jsgt(.r1, 0, 0)); try expect_opcode(0x6d, Insn.jsgt(.r1, .r2, 0)); try expect_opcode(0x75, Insn.jsge(.r1, 0, 0)); try expect_opcode(0x7d, Insn.jsge(.r1, .r2, 0)); try expect_opcode(0xc5, Insn.jslt(.r1, 0, 0)); try expect_opcode(0xcd, Insn.jslt(.r1, .r2, 0)); try expect_opcode(0xd5, Insn.jsle(.r1, 0, 0)); try expect_opcode(0xdd, Insn.jsle(.r1, .r2, 0)); try expect_opcode(0x85, Insn.call(.unspec)); try expect_opcode(0x95, Insn.exit()); } |
Cmd |
pub const Cmd = enum(usize) { map_create, map_lookup_elem, map_update_elem, map_delete_elem, map_get_next_key, prog_load, obj_pin, obj_get, prog_attach, prog_detach, prog_test_run, prog_get_next_id, map_get_next_id, prog_get_fd_by_id, map_get_fd_by_id, obj_get_info_by_fd, prog_query, raw_tracepoint_open, btf_load, btf_get_fd_by_id, task_fd_query, map_lookup_and_delete_elem, map_freeze, btf_get_next_id, map_lookup_batch, map_lookup_and_delete_batch, map_update_batch, map_delete_batch, link_create, link_update, link_get_fd_by_id, link_get_next_id, enable_stats, iter_create, link_detach, _, }; |
MapType Create a map and return a file descriptor that refers to the map. The close-on-exec file descriptor flag is automatically enabled for the new file descriptor. |
pub const MapType = enum(u32) { unspec, hash, array, prog_array, perf_event_array, percpu_hash, percpu_array, stack_trace, cgroup_array, lru_hash, lru_percpu_hash, lpm_trie, array_of_maps, hash_of_maps, devmap, sockmap, cpumap, xskmap, sockhash, cgroup_storage, reuseport_sockarray, percpu_cgroup_storage, queue, stack, sk_storage, devmap_hash, struct_ops, ringbuf, _, }; |
ProgType An ordered and shared CPU version of perf_event_array. They have similar semantics: - variable length records - no blocking: when full, reservation fails - memory mappable for ease and speed - epoll notifications for new data, but can busy poll |
pub const ProgType = enum(u32) { unspec, socket_filter, kprobe, sched_cls, sched_act, tracepoint, xdp, perf_event, cgroup_skb, cgroup_sock, lwt_in, lwt_out, lwt_xmit, sock_ops, sk_skb, cgroup_device, sk_msg, raw_tracepoint, cgroup_sock_addr, lwt_seg6local, lirc_mode2, sk_reuseport, flow_dissector, cgroup_sysctl, raw_tracepoint_writable, cgroup_sockopt, tracing, struct_ops, ext, lsm, sk_lookup, syscall, _, }; |
AttachTypecontext type: __sk_buff context type: bpf_user_pt_regs_t context type: __sk_buff context type: __sk_buff context type: u64 context type: xdp_md context type: bpf_perf_event_data context type: __sk_buff context type: bpf_sock context type: __sk_buff context type: __sk_buff context type: __sk_buff context type: bpf_sock_ops context type: __sk_buff context type: bpf_cgroup_dev_ctx context type: sk_msg_md context type: bpf_raw_tracepoint_args context type: bpf_sock_addr context type: __sk_buff context type: u32 context type: sk_reuseport_md context type: __sk_buff context type: bpf_sysctl context type: bpf_raw_tracepoint_args context type: bpf_sockopt context type: void * context type: void * context type: void * context type: void * context type: bpf_sk_lookup context type: void * |
pub const AttachType = enum(u32) { cgroup_inet_ingress, cgroup_inet_egress, cgroup_inet_sock_create, cgroup_sock_ops, sk_skb_stream_parser, sk_skb_stream_verdict, cgroup_device, sk_msg_verdict, cgroup_inet4_bind, cgroup_inet6_bind, cgroup_inet4_connect, cgroup_inet6_connect, cgroup_inet4_post_bind, cgroup_inet6_post_bind, cgroup_udp4_sendmsg, cgroup_udp6_sendmsg, lirc_mode2, flow_dissector, cgroup_sysctl, cgroup_udp4_recvmsg, cgroup_udp6_recvmsg, cgroup_getsockopt, cgroup_setsockopt, trace_raw_tp, trace_fentry, trace_fexit, modify_return, lsm_mac, trace_iter, cgroup_inet4_getpeername, cgroup_inet6_getpeername, cgroup_inet4_getsockname, cgroup_inet6_getsockname, xdp_devmap, cgroup_inet_sock_release, xdp_cpumap, sk_lookup, xdp, _, }; const obj_name_len = 16; |
MapCreateAttrstruct used by Cmd.map_create command |
pub const MapCreateAttr = extern struct { map_type: u32, key_size: u32, value_size: u32, max_entries: u32, map_flags: u32, inner_map_fd: fd_t, numa_node: u32, map_name: [obj_name_len]u8, map_ifindex: u32, btf_fd: fd_t, btf_key_type_id: u32, bpf_value_type_id: u32, btf_vmlinux_value_type_id: u32, }; |
MapElemAttrone of MapType size of key in bytes size of value in bytes max number of entries in a map .map_create related flags fd pointing to the inner map numa node (effective only if MapCreateFlags.numa_node is set) ifindex of netdev to create on fd pointing to a BTF type data BTF type_id of the key BTF type_id of the value BTF type_id of a kernel struct stored as the map value struct used by Cmd.map_*_elem commands |
pub const MapElemAttr = extern struct { map_fd: fd_t, key: u64, result: extern union { value: u64, next_key: u64, }, flags: u64, }; |
MapBatchAttrstruct used by Cmd.map_*_batch commands |
pub const MapBatchAttr = extern struct { in_batch: u64, out_batch: u64, keys: u64, values: u64, count: u32, map_fd: fd_t, elem_flags: u64, flags: u64, }; |
ProgLoadAttrstart batch, NULL to start from beginning output: next start batch input/output: input: # of key/value elements output: # of filled elements struct used by Cmd.prog_load command |
pub const ProgLoadAttr = extern struct { prog_type: u32, insn_cnt: u32, insns: u64, license: u64, log_level: u32, log_size: u32, log_buf: u64, kern_version: u32, prog_flags: u32, prog_name: [obj_name_len]u8, prog_ifindex: u32, expected_attach_type: u32, prog_btf_fd: fd_t, func_info_rec_size: u32, func_info: u64, func_info_cnt: u32, line_info_rec_size: u32, line_info: u64, line_info_cnt: u32, attact_btf_id: u32, attach_prog_id: u32, }; |
ObjAttrone of ProgType verbosity level of verifier size of user buffer user supplied buffer not used ifindex of netdev to prep for. For some prog types expected attach type must be known at load time to verify attach type specific parts of prog (context accesses, allowed helpers, etc). fd pointing to BTF type data userspace bpf_func_info size number of bpf_func_info records userspace bpf_line_info size number of bpf_line_info records in-kernel BTF type id to attach to 0 to attach to vmlinux struct used by Cmd.obj_* commands |
pub const ObjAttr = extern struct { pathname: u64, bpf_fd: fd_t, file_flags: u32, }; |
ProgAttachAttrstruct used by Cmd.prog_attach/detach commands |
pub const ProgAttachAttr = extern struct { target_fd: fd_t, attach_bpf_fd: fd_t, attach_type: u32, attach_flags: u32, // TODO: BPF_F_REPLACE flags replace_bpf_fd: fd_t, }; |
TestRunAttrcontainer object to attach to eBPF program to attach previously attached eBPF program to replace if .replace is used struct used by Cmd.prog_test_run command |
pub const TestRunAttr = extern struct { prog_fd: fd_t, retval: u32, data_size_in: u32, data_size_out: u32, data_in: u64, data_out: u64, repeat: u32, duration: u32, ctx_size_in: u32, ctx_size_out: u32, ctx_in: u64, ctx_out: u64, }; |
GetIdAttrinput: len of data_in input/output: len of data_out. returns ENOSPC if data_out is too small. input: len of ctx_in input/output: len of ctx_out. returns ENOSPC if ctx_out is too small. struct used by Cmd.*_get_*_id commands |
pub const GetIdAttr = extern struct { id: extern union { start_id: u32, prog_id: u32, map_id: u32, btf_id: u32, link_id: u32, }, next_id: u32, open_flags: u32, }; |
InfoAttrstruct used by Cmd.obj_get_info_by_fd command |
pub const InfoAttr = extern struct { bpf_fd: fd_t, info_len: u32, info: u64, }; |
QueryAttrstruct used by Cmd.prog_query command |
pub const QueryAttr = extern struct { target_fd: fd_t, attach_type: u32, query_flags: u32, attach_flags: u32, prog_ids: u64, prog_cnt: u32, }; |
RawTracepointAttrcontainer object to query struct used by Cmd.raw_tracepoint_open command |
pub const RawTracepointAttr = extern struct { name: u64, prog_fd: fd_t, }; |
BtfLoadAttrstruct used by Cmd.btf_load command |
pub const BtfLoadAttr = extern struct { btf: u64, btf_log_buf: u64, btf_size: u32, btf_log_size: u32, btf_log_level: u32, }; |
TaskFdQueryAttrstruct used by Cmd.task_fd_query |
pub const TaskFdQueryAttr = extern struct { pid: pid_t, fd: fd_t, flags: u32, buf_len: u32, buf: u64, prog_id: u32, fd_type: u32, probe_offset: u64, probe_addr: u64, }; |
LinkCreateAttrinput: pid input: fd input: flags input/output: buf len input/output: tp_name for tracepoint symbol for kprobe filename for uprobe output: prod_id output: BPF_FD_TYPE output: probe_offset output: probe_addr struct used by Cmd.link_create command |
pub const LinkCreateAttr = extern struct { prog_fd: fd_t, target_fd: fd_t, attach_type: u32, flags: u32, }; |
LinkUpdateAttreBPF program to attach object to attach to extra flags struct used by Cmd.link_update command |
pub const LinkUpdateAttr = extern struct { link_fd: fd_t, new_prog_fd: fd_t, flags: u32, old_prog_fd: fd_t, }; |
EnableStatsAttrnew program to update link with extra flags expected link's program fd, it is specified only if BPF_F_REPLACE is set in flags struct used by Cmd.enable_stats command |
pub const EnableStatsAttr = extern struct { type: u32, }; |
IterCreateAttrstruct used by Cmd.iter_create command |
pub const IterCreateAttr = extern struct { link_fd: fd_t, flags: u32, }; |
AttrMega struct that is passed to the bpf() syscall |
pub const Attr = extern union { map_create: MapCreateAttr, map_elem: MapElemAttr, map_batch: MapBatchAttr, prog_load: ProgLoadAttr, obj: ObjAttr, prog_attach: ProgAttachAttr, test_run: TestRunAttr, get_id: GetIdAttr, info: InfoAttr, query: QueryAttr, raw_tracepoint: RawTracepointAttr, btf_load: BtfLoadAttr, task_fd_query: TaskFdQueryAttr, link_create: LinkCreateAttr, link_update: LinkUpdateAttr, enable_stats: EnableStatsAttr, iter_create: IterCreateAttr, }; |
Log |
pub const Log = struct { level: u32, buf: []u8, }; |
map_create() |
pub fn map_create(map_type: MapType, key_size: u32, value_size: u32, max_entries: u32) !fd_t { var attr = Attr{ .map_create = std.mem.zeroes(MapCreateAttr), }; attr.map_create.map_type = @intFromEnum(map_type); attr.map_create.key_size = key_size; attr.map_create.value_size = value_size; attr.map_create.max_entries = max_entries; const rc = linux.bpf(.map_create, &attr, @sizeOf(MapCreateAttr)); switch (errno(rc)) { .SUCCESS => return @as(fd_t, @intCast(rc)), .INVAL => return error.MapTypeOrAttrInvalid, .NOMEM => return error.SystemResources, .PERM => return error.AccessDenied, else => |err| return unexpectedErrno(err), } } |
Test:map_create |
test "map_create" { const map = try map_create(.hash, 4, 4, 32); defer std.os.close(map); } |
map_lookup_elem() |
pub fn map_lookup_elem(fd: fd_t, key: []const u8, value: []u8) !void { var attr = Attr{ .map_elem = std.mem.zeroes(MapElemAttr), }; attr.map_elem.map_fd = fd; attr.map_elem.key = @intFromPtr(key.ptr); attr.map_elem.result.value = @intFromPtr(value.ptr); const rc = linux.bpf(.map_lookup_elem, &attr, @sizeOf(MapElemAttr)); switch (errno(rc)) { .SUCCESS => return, .BADF => return error.BadFd, .FAULT => unreachable, .INVAL => return error.FieldInAttrNeedsZeroing, .NOENT => return error.NotFound, .PERM => return error.AccessDenied, else => |err| return unexpectedErrno(err), } } |
map_update_elem() |
pub fn map_update_elem(fd: fd_t, key: []const u8, value: []const u8, flags: u64) !void { var attr = Attr{ .map_elem = std.mem.zeroes(MapElemAttr), }; attr.map_elem.map_fd = fd; attr.map_elem.key = @intFromPtr(key.ptr); attr.map_elem.result = .{ .value = @intFromPtr(value.ptr) }; attr.map_elem.flags = flags; const rc = linux.bpf(.map_update_elem, &attr, @sizeOf(MapElemAttr)); switch (errno(rc)) { .SUCCESS => return, .@"2BIG" => return error.ReachedMaxEntries, .BADF => return error.BadFd, .FAULT => unreachable, .INVAL => return error.FieldInAttrNeedsZeroing, .NOMEM => return error.SystemResources, .PERM => return error.AccessDenied, else => |err| return unexpectedErrno(err), } } |
map_delete_elem() |
pub fn map_delete_elem(fd: fd_t, key: []const u8) !void { var attr = Attr{ .map_elem = std.mem.zeroes(MapElemAttr), }; attr.map_elem.map_fd = fd; attr.map_elem.key = @intFromPtr(key.ptr); const rc = linux.bpf(.map_delete_elem, &attr, @sizeOf(MapElemAttr)); switch (errno(rc)) { .SUCCESS => return, .BADF => return error.BadFd, .FAULT => unreachable, .INVAL => return error.FieldInAttrNeedsZeroing, .NOENT => return error.NotFound, .PERM => return error.AccessDenied, else => |err| return unexpectedErrno(err), } } |
map_get_next_key() |
pub fn map_get_next_key(fd: fd_t, key: []const u8, next_key: []u8) !bool { var attr = Attr{ .map_elem = std.mem.zeroes(MapElemAttr), }; attr.map_elem.map_fd = fd; attr.map_elem.key = @intFromPtr(key.ptr); attr.map_elem.result.next_key = @intFromPtr(next_key.ptr); const rc = linux.bpf(.map_get_next_key, &attr, @sizeOf(MapElemAttr)); switch (errno(rc)) { .SUCCESS => return true, .BADF => return error.BadFd, .FAULT => unreachable, .INVAL => return error.FieldInAttrNeedsZeroing, .NOENT => return false, .PERM => return error.AccessDenied, else => |err| return unexpectedErrno(err), } } |
Test:map lookup, update, and delete |
test "map lookup, update, and delete" { const key_size = 4; const value_size = 4; const map = try map_create(.hash, key_size, value_size, 1); defer std.os.close(map); const key = std.mem.zeroes([key_size]u8); var value = std.mem.zeroes([value_size]u8); // fails looking up value that doesn't exist try expectError(error.NotFound, map_lookup_elem(map, &key, &value)); // succeed at updating and looking up element try map_update_elem(map, &key, &value, 0); try map_lookup_elem(map, &key, &value); // fails inserting more than max entries const second_key = [key_size]u8{ 0, 0, 0, 1 }; try expectError(error.ReachedMaxEntries, map_update_elem(map, &second_key, &value, 0)); // succeed at iterating all keys of map var lookup_key = [_]u8{ 1, 0, 0, 0 }; var next_key = [_]u8{ 2, 3, 4, 5 }; // garbage value const status = try map_get_next_key(map, &lookup_key, &next_key); try expectEqual(status, true); try expectEqual(next_key, key); lookup_key = next_key; const status2 = try map_get_next_key(map, &lookup_key, &next_key); try expectEqual(status2, false); // succeed at deleting an existing elem try map_delete_elem(map, &key); try expectError(error.NotFound, map_lookup_elem(map, &key, &value)); // fail at deleting a non-existing elem try expectError(error.NotFound, map_delete_elem(map, &key)); } |
prog_load() |
pub fn prog_load( prog_type: ProgType, insns: []const Insn, log: ?*Log, license: []const u8, kern_version: u32, flags: u32, ) !fd_t { var attr = Attr{ .prog_load = std.mem.zeroes(ProgLoadAttr), }; attr.prog_load.prog_type = @intFromEnum(prog_type); attr.prog_load.insns = @intFromPtr(insns.ptr); attr.prog_load.insn_cnt = @as(u32, @intCast(insns.len)); attr.prog_load.license = @intFromPtr(license.ptr); attr.prog_load.kern_version = kern_version; attr.prog_load.prog_flags = flags; if (log) |l| { attr.prog_load.log_buf = @intFromPtr(l.buf.ptr); attr.prog_load.log_size = @as(u32, @intCast(l.buf.len)); attr.prog_load.log_level = l.level; } const rc = linux.bpf(.prog_load, &attr, @sizeOf(ProgLoadAttr)); return switch (errno(rc)) { .SUCCESS => @as(fd_t, @intCast(rc)), .ACCES => error.UnsafeProgram, .FAULT => unreachable, .INVAL => error.InvalidProgram, .PERM => error.AccessDenied, else => |err| unexpectedErrno(err), }; } |
Test:prog_load |
test "prog_load" { // this should fail because it does not set r0 before exiting const bad_prog = [_]Insn{ Insn.exit(), }; const good_prog = [_]Insn{ Insn.mov(.r0, 0), Insn.exit(), }; const prog = try prog_load(.socket_filter, &good_prog, null, "MIT", 0, 0); defer std.os.close(prog); try expectError(error.UnsafeProgram, prog_load(.socket_filter, &bad_prog, null, "MIT", 0, 0)); } |
Generated by zstd-browse2 on 2023-11-04 14:12:41 -0400. |