|
const std = @import("std.zig"); const builtin = @import("builtin"); const math = std.math; |
FailingAllocatortesting/failing_allocator.zig |
pub const FailingAllocator = @import("testing/failing_allocator.zig").FailingAllocator; |
allocatorThis should only be used in temporary test programs. |
pub const allocator = allocator_instance.allocator(); pub var allocator_instance = b: { if (!builtin.is_test) @compileError("Cannot use testing allocator outside of test block"); break :b std.heap.GeneralPurposeAllocator(.{}){}; }; |
failing_allocator |
pub const failing_allocator = failing_allocator_instance.allocator(); pub var failing_allocator_instance = FailingAllocator.init(base_allocator_instance.allocator(), .{ .fail_index = 0 }); pub var base_allocator_instance = std.heap.FixedBufferAllocator.init(""); pub var log_level = std.log.Level.warn; // Disable printing in tests for simple backends. |
backend_can_printTODO https://github.com/ziglang/zig/issues/5738 |
pub const backend_can_print = builtin.zig_backend != .stage2_spirv64; fn print(comptime fmt: []const u8, args: anytype) void { if (@inComptime()) { @compileError(std.fmt.comptimePrint(fmt, args)); } else if (backend_can_print) { std.debug.print(fmt, args); } } |
expectError()This function is intended to be used only in tests. It prints diagnostics to stderr and then returns a test failure error when actual_error_union is not expected_error. |
pub fn expectError(expected_error: anyerror, actual_error_union: anytype) !void { if (actual_error_union) |actual_payload| { print("expected error.{s}, found {any}\n", .{ @errorName(expected_error), actual_payload }); return error.TestUnexpectedError; } else |actual_error| { if (expected_error != actual_error) { print("expected error.{s}, found error.{s}\n", .{ @errorName(expected_error), @errorName(actual_error), }); return error.TestExpectedError; } } } |
expectEqual() This function is intended to be used only in tests. When the two values are not equal, prints diagnostics to stderr to show exactly how they are not equal, then returns a test failure error. |
pub fn expectEqual(expected: anytype, actual: @TypeOf(expected)) !void { switch (@typeInfo(@TypeOf(actual))) { .NoReturn, .Opaque, .Frame, .AnyFrame, => @compileError("value of type " ++ @typeName(@TypeOf(actual)) ++ " encountered"), .Undefined, .Null, .Void, => return, .Type => { if (actual != expected) { print("expected type {s}, found type {s}\n", .{ @typeName(expected), @typeName(actual) }); return error.TestExpectedEqual; } }, .Bool, .Int, .Float, .ComptimeFloat, .ComptimeInt, .EnumLiteral, .Enum, .Fn, .ErrorSet, => { if (actual != expected) { print("expected {}, found {}\n", .{ expected, actual }); return error.TestExpectedEqual; } }, .Pointer => |pointer| { switch (pointer.size) { .One, .Many, .C => { if (actual != expected) { print("expected {*}, found {*}\n", .{ expected, actual }); return error.TestExpectedEqual; } }, .Slice => { if (actual.ptr != expected.ptr) { print("expected slice ptr {*}, found {*}\n", .{ expected.ptr, actual.ptr }); return error.TestExpectedEqual; } if (actual.len != expected.len) { print("expected slice len {}, found {}\n", .{ expected.len, actual.len }); return error.TestExpectedEqual; } }, } }, .Array => |array| try expectEqualSlices(array.child, &expected, &actual), .Vector => |info| { var i: usize = 0; while (i < info.len) : (i += 1) { if (!std.meta.eql(expected[i], actual[i])) { print("index {} incorrect. expected {}, found {}\n", .{ i, expected[i], actual[i], }); return error.TestExpectedEqual; } } }, .Struct => |structType| { inline for (structType.fields) |field| { try expectEqual(@field(expected, field.name), @field(actual, field.name)); } }, .Union => |union_info| { if (union_info.tag_type == null) { @compileError("Unable to compare untagged union values"); } const Tag = std.meta.Tag(@TypeOf(expected)); const expectedTag = @as(Tag, expected); const actualTag = @as(Tag, actual); try expectEqual(expectedTag, actualTag); // we only reach this loop if the tags are equal inline for (std.meta.fields(@TypeOf(actual))) |fld| { if (std.mem.eql(u8, fld.name, @tagName(actualTag))) { try expectEqual(@field(expected, fld.name), @field(actual, fld.name)); return; } } // we iterate over *all* union fields // => we should never get here as the loop above is // including all possible values. unreachable; }, .Optional => { if (expected) |expected_payload| { if (actual) |actual_payload| { try expectEqual(expected_payload, actual_payload); } else { print("expected {any}, found null\n", .{expected_payload}); return error.TestExpectedEqual; } } else { if (actual) |actual_payload| { print("expected null, found {any}\n", .{actual_payload}); return error.TestExpectedEqual; } } }, .ErrorUnion => { if (expected) |expected_payload| { if (actual) |actual_payload| { try expectEqual(expected_payload, actual_payload); } else |actual_err| { print("expected {any}, found {}\n", .{ expected_payload, actual_err }); return error.TestExpectedEqual; } } else |expected_err| { if (actual) |actual_payload| { print("expected {}, found {any}\n", .{ expected_err, actual_payload }); return error.TestExpectedEqual; } else |actual_err| { try expectEqual(expected_err, actual_err); } } }, } } |
Test:expectEqual.union(enum) |
test "expectEqual.union(enum)" { const T = union(enum) { a: i32, b: f32, }; const a10 = T{ .a = 10 }; try expectEqual(a10, a10); } |
expectFmt()This function is intended to be used only in tests. When the formatted result of the template and its arguments does not equal the expected text, it prints diagnostics to stderr to show how they are not equal, then returns an error. |
pub fn expectFmt(expected: []const u8, comptime template: []const u8, args: anytype) !void { const result = try std.fmt.allocPrint(allocator, template, args); defer allocator.free(result); if (std.mem.eql(u8, result, expected)) return; print("\n====== expected this output: =========\n", .{}); print("{s}", .{expected}); print("\n======== instead found this: =========\n", .{}); print("{s}", .{result}); print("\n======================================\n", .{}); return error.TestExpectedFmt; } |
expectApproxEqAbs() This function is intended to be used only in tests. When the actual value is not approximately equal to the expected value, prints diagnostics to stderr to show exactly how they are not equal, then returns a test failure error. See |
pub fn expectApproxEqAbs(expected: anytype, actual: @TypeOf(expected), tolerance: @TypeOf(expected)) !void { const T = @TypeOf(expected); switch (@typeInfo(T)) { .Float => if (!math.approxEqAbs(T, expected, actual, tolerance)) { print("actual {}, not within absolute tolerance {} of expected {}\n", .{ actual, tolerance, expected }); return error.TestExpectedApproxEqAbs; }, .ComptimeFloat => @compileError("Cannot approximately compare two comptime_float values"), else => @compileError("Unable to compare non floating point values"), } } |
Test:expectApproxEqAbs |
test "expectApproxEqAbs" { inline for ([_]type{ f16, f32, f64, f128 }) |T| { const pos_x: T = 12.0; const pos_y: T = 12.06; const neg_x: T = -12.0; const neg_y: T = -12.06; try expectApproxEqAbs(pos_x, pos_y, 0.1); try expectApproxEqAbs(neg_x, neg_y, 0.1); } } |
expectApproxEqRel() This function is intended to be used only in tests. When the actual value is not approximately equal to the expected value, prints diagnostics to stderr to show exactly how they are not equal, then returns a test failure error. See |
pub fn expectApproxEqRel(expected: anytype, actual: @TypeOf(expected), tolerance: @TypeOf(expected)) !void { const T = @TypeOf(expected); switch (@typeInfo(T)) { .Float => if (!math.approxEqRel(T, expected, actual, tolerance)) { print("actual {}, not within relative tolerance {} of expected {}\n", .{ actual, tolerance, expected }); return error.TestExpectedApproxEqRel; }, .ComptimeFloat => @compileError("Cannot approximately compare two comptime_float values"), else => @compileError("Unable to compare non floating point values"), } } |
Test:expectApproxEqRel |
test "expectApproxEqRel" { inline for ([_]type{ f16, f32, f64, f128 }) |T| { const eps_value = comptime math.floatEps(T); const sqrt_eps_value = comptime @sqrt(eps_value); const pos_x: T = 12.0; const pos_y: T = pos_x + 2 * eps_value; const neg_x: T = -12.0; const neg_y: T = neg_x - 2 * eps_value; try expectApproxEqRel(pos_x, pos_y, sqrt_eps_value); try expectApproxEqRel(neg_x, neg_y, sqrt_eps_value); } } |
expectEqualSlices() This function is intended to be used only in tests. When the two slices are not equal, prints diagnostics to stderr to show exactly how they are not equal (with the differences highlighted in red), then returns a test failure error. The colorized output is optional and controlled by the return of |
pub fn expectEqualSlices(comptime T: type, expected: []const T, actual: []const T) !void { if (expected.ptr == actual.ptr and expected.len == actual.len) { return; } const diff_index: usize = diff_index: { const shortest = @min(expected.len, actual.len); var index: usize = 0; while (index < shortest) : (index += 1) { if (!std.meta.eql(actual[index], expected[index])) break :diff_index index; } break :diff_index if (expected.len == actual.len) return else shortest; }; if (!backend_can_print) { return error.TestExpectedEqual; } print("slices differ. first difference occurs at index {d} (0x{X})\n", .{ diff_index, diff_index }); // TODO: Should this be configurable by the caller? const max_lines: usize = 16; const max_window_size: usize = if (T == u8) max_lines * 16 else max_lines; // Print a maximum of max_window_size items of each input, starting just before the // first difference to give a bit of context. var window_start: usize = 0; if (@max(actual.len, expected.len) > max_window_size) { const alignment = if (T == u8) 16 else 2; window_start = std.mem.alignBackward(usize, diff_index - @min(diff_index, alignment), alignment); } const expected_window = expected[window_start..@min(expected.len, window_start + max_window_size)]; const expected_truncated = window_start + expected_window.len < expected.len; const actual_window = actual[window_start..@min(actual.len, window_start + max_window_size)]; const actual_truncated = window_start + actual_window.len < actual.len; const ttyconf = std.io.tty.detectConfig(std.io.getStdErr()); var differ = if (T == u8) BytesDiffer{ .expected = expected_window, .actual = actual_window, .ttyconf = ttyconf, } else SliceDiffer(T){ .start_index = window_start, .expected = expected_window, .actual = actual_window, .ttyconf = ttyconf, }; const stderr = std.io.getStdErr(); // Print indexes as hex for slices of u8 since it's more likely to be binary data where // that is usually useful. const index_fmt = if (T == u8) "0x{X}" else "{}"; print("\n============ expected this output: ============= len: {} (0x{X})\n\n", .{ expected.len, expected.len }); if (window_start > 0) { if (T == u8) { print("... truncated, start index: " ++ index_fmt ++ " ...\n", .{window_start}); } else { print("... truncated ...\n", .{}); } } differ.write(stderr.writer()) catch {}; if (expected_truncated) { const end_offset = window_start + expected_window.len; const num_missing_items = expected.len - (window_start + expected_window.len); if (T == u8) { print("... truncated, indexes [" ++ index_fmt ++ "..] not shown, remaining bytes: " ++ index_fmt ++ " ...\n", .{ end_offset, num_missing_items }); } else { print("... truncated, remaining items: " ++ index_fmt ++ " ...\n", .{num_missing_items}); } } // now reverse expected/actual and print again differ.expected = actual_window; differ.actual = expected_window; print("\n============= instead found this: ============== len: {} (0x{X})\n\n", .{ actual.len, actual.len }); if (window_start > 0) { if (T == u8) { print("... truncated, start index: " ++ index_fmt ++ " ...\n", .{window_start}); } else { print("... truncated ...\n", .{}); } } differ.write(stderr.writer()) catch {}; if (actual_truncated) { const end_offset = window_start + actual_window.len; const num_missing_items = actual.len - (window_start + actual_window.len); if (T == u8) { print("... truncated, indexes [" ++ index_fmt ++ "..] not shown, remaining bytes: " ++ index_fmt ++ " ...\n", .{ end_offset, num_missing_items }); } else { print("... truncated, remaining items: " ++ index_fmt ++ " ...\n", .{num_missing_items}); } } print("\n================================================\n\n", .{}); return error.TestExpectedEqual; } fn SliceDiffer(comptime T: type) type { return struct { start_index: usize, expected: []const T, actual: []const T, ttyconf: std.io.tty.Config, const Self = @This(); |
write() |
pub fn write(self: Self, writer: anytype) !void { for (self.expected, 0..) |value, i| { var full_index = self.start_index + i; const diff = if (i < self.actual.len) !std.meta.eql(self.actual[i], value) else true; if (diff) try self.ttyconf.setColor(writer, .red); if (@typeInfo(T) == .Pointer) { try writer.print("[{}]{*}: {any}\n", .{ full_index, value, value }); } else { try writer.print("[{}]: {any}\n", .{ full_index, value }); } if (diff) try self.ttyconf.setColor(writer, .reset); } } }; } const BytesDiffer = struct { expected: []const u8, actual: []const u8, ttyconf: std.io.tty.Config, |
write() |
pub fn write(self: BytesDiffer, writer: anytype) !void { var expected_iterator = ChunkIterator{ .bytes = self.expected }; while (expected_iterator.next()) |chunk| { // to avoid having to calculate diffs twice per chunk var diffs: std.bit_set.IntegerBitSet(16) = .{ .mask = 0 }; for (chunk, 0..) |byte, i| { var absolute_byte_index = (expected_iterator.index - chunk.len) + i; const diff = if (absolute_byte_index < self.actual.len) self.actual[absolute_byte_index] != byte else true; if (diff) diffs.set(i); try self.writeByteDiff(writer, "{X:0>2} ", byte, diff); if (i == 7) try writer.writeByte(' '); } try writer.writeByte(' '); if (chunk.len < 16) { var missing_columns = (16 - chunk.len) * 3; if (chunk.len < 8) missing_columns += 1; try writer.writeByteNTimes(' ', missing_columns); } for (chunk, 0..) |byte, i| { const byte_to_print = if (std.ascii.isPrint(byte)) byte else '.'; try self.writeByteDiff(writer, "{c}", byte_to_print, diffs.isSet(i)); } try writer.writeByte('\n'); } } fn writeByteDiff(self: BytesDiffer, writer: anytype, comptime fmt: []const u8, byte: u8, diff: bool) !void { if (diff) try self.ttyconf.setColor(writer, .red); try writer.print(fmt, .{byte}); if (diff) try self.ttyconf.setColor(writer, .reset); } const ChunkIterator = struct { bytes: []const u8, index: usize = 0, |
next() |
pub fn next(self: *ChunkIterator) ?[]const u8 { if (self.index == self.bytes.len) return null; const start_index = self.index; const end_index = @min(self.bytes.len, start_index + 16); self.index = end_index; return self.bytes[start_index..end_index]; } }; }; test { try expectEqualSlices(u8, "foo\x00", "foo\x00"); try expectEqualSlices(u16, &[_]u16{ 100, 200, 300, 400 }, &[_]u16{ 100, 200, 300, 400 }); const E = enum { foo, bar }; const S = struct { v: E, }; try expectEqualSlices( S, &[_]S{ .{ .v = .foo }, .{ .v = .bar }, .{ .v = .foo }, .{ .v = .bar } }, &[_]S{ .{ .v = .foo }, .{ .v = .bar }, .{ .v = .foo }, .{ .v = .bar } }, ); } |
expectEqualSentinel()This function is intended to be used only in tests. Checks that two slices or two arrays are equal, including that their sentinel (if any) are the same. Will error if given another type. |
pub fn expectEqualSentinel(comptime T: type, comptime sentinel: T, expected: [:sentinel]const T, actual: [:sentinel]const T) !void { try expectEqualSlices(T, expected, actual); const expected_value_sentinel = blk: { switch (@typeInfo(@TypeOf(expected))) { .Pointer => { break :blk expected[expected.len]; }, .Array => |array_info| { const indexable_outside_of_bounds = @as([]const array_info.child, &expected); break :blk indexable_outside_of_bounds[indexable_outside_of_bounds.len]; }, else => {}, } }; const actual_value_sentinel = blk: { switch (@typeInfo(@TypeOf(actual))) { .Pointer => { break :blk actual[actual.len]; }, .Array => |array_info| { const indexable_outside_of_bounds = @as([]const array_info.child, &actual); break :blk indexable_outside_of_bounds[indexable_outside_of_bounds.len]; }, else => {}, } }; if (!std.meta.eql(sentinel, expected_value_sentinel)) { print("expectEqualSentinel: 'expected' sentinel in memory is different from its type sentinel. type sentinel {}, in memory sentinel {}\n", .{ sentinel, expected_value_sentinel }); return error.TestExpectedEqual; } if (!std.meta.eql(sentinel, actual_value_sentinel)) { print("expectEqualSentinel: 'actual' sentinel in memory is different from its type sentinel. type sentinel {}, in memory sentinel {}\n", .{ sentinel, actual_value_sentinel }); return error.TestExpectedEqual; } } |
expect() This function is intended to be used only in tests. When |
pub fn expect(ok: bool) !void { if (!ok) return error.TestUnexpectedResult; } |
TmpDir |
pub const TmpDir = struct { dir: std.fs.Dir, parent_dir: std.fs.Dir, sub_path: [sub_path_len]u8, const random_bytes_count = 12; const sub_path_len = std.fs.base64_encoder.calcSize(random_bytes_count); |
cleanup() |
pub fn cleanup(self: *TmpDir) void { self.dir.close(); self.parent_dir.deleteTree(&self.sub_path) catch {}; self.parent_dir.close(); self.* = undefined; } }; |
TmpIterableDir |
pub const TmpIterableDir = struct { iterable_dir: std.fs.IterableDir, parent_dir: std.fs.Dir, sub_path: [sub_path_len]u8, const random_bytes_count = 12; const sub_path_len = std.fs.base64_encoder.calcSize(random_bytes_count); |
cleanup() |
pub fn cleanup(self: *TmpIterableDir) void { self.iterable_dir.close(); self.parent_dir.deleteTree(&self.sub_path) catch {}; self.parent_dir.close(); self.* = undefined; } }; |
tmpDir() |
pub fn tmpDir(opts: std.fs.Dir.OpenDirOptions) TmpDir { var random_bytes: [TmpDir.random_bytes_count]u8 = undefined; std.crypto.random.bytes(&random_bytes); var sub_path: [TmpDir.sub_path_len]u8 = undefined; _ = std.fs.base64_encoder.encode(&sub_path, &random_bytes); var cwd = std.fs.cwd(); var cache_dir = cwd.makeOpenPath("zig-cache", .{}) catch @panic("unable to make tmp dir for testing: unable to make and open zig-cache dir"); defer cache_dir.close(); var parent_dir = cache_dir.makeOpenPath("tmp", .{}) catch @panic("unable to make tmp dir for testing: unable to make and open zig-cache/tmp dir"); var dir = parent_dir.makeOpenPath(&sub_path, opts) catch @panic("unable to make tmp dir for testing: unable to make and open the tmp dir"); return .{ .dir = dir, .parent_dir = parent_dir, .sub_path = sub_path, }; } |
tmpIterableDir() |
pub fn tmpIterableDir(opts: std.fs.Dir.OpenDirOptions) TmpIterableDir { var random_bytes: [TmpIterableDir.random_bytes_count]u8 = undefined; std.crypto.random.bytes(&random_bytes); var sub_path: [TmpIterableDir.sub_path_len]u8 = undefined; _ = std.fs.base64_encoder.encode(&sub_path, &random_bytes); var cwd = std.fs.cwd(); var cache_dir = cwd.makeOpenPath("zig-cache", .{}) catch @panic("unable to make tmp dir for testing: unable to make and open zig-cache dir"); defer cache_dir.close(); var parent_dir = cache_dir.makeOpenPath("tmp", .{}) catch @panic("unable to make tmp dir for testing: unable to make and open zig-cache/tmp dir"); var dir = parent_dir.makeOpenPathIterable(&sub_path, opts) catch @panic("unable to make tmp dir for testing: unable to make and open the tmp dir"); return .{ .iterable_dir = dir, .parent_dir = parent_dir, .sub_path = sub_path, }; } |
Test:expectEqual nested array |
test "expectEqual nested array" { const a = [2][2]f32{ [_]f32{ 1.0, 0.0 }, [_]f32{ 0.0, 1.0 }, }; const b = [2][2]f32{ [_]f32{ 1.0, 0.0 }, [_]f32{ 0.0, 1.0 }, }; try expectEqual(a, b); } |
Test:expectEqual vector |
test "expectEqual vector" { var a: @Vector(4, u32) = @splat(4); var b: @Vector(4, u32) = @splat(4); try expectEqual(a, b); } |
expectEqualStrings() |
pub fn expectEqualStrings(expected: []const u8, actual: []const u8) !void { if (std.mem.indexOfDiff(u8, actual, expected)) |diff_index| { print("\n====== expected this output: =========\n", .{}); printWithVisibleNewlines(expected); print("\n======== instead found this: =========\n", .{}); printWithVisibleNewlines(actual); print("\n======================================\n", .{}); var diff_line_number: usize = 1; for (expected[0..diff_index]) |value| { if (value == '\n') diff_line_number += 1; } print("First difference occurs on line {d}:\n", .{diff_line_number}); print("expected:\n", .{}); printIndicatorLine(expected, diff_index); print("found:\n", .{}); printIndicatorLine(actual, diff_index); return error.TestExpectedEqual; } } |
expectStringStartsWith() |
pub fn expectStringStartsWith(actual: []const u8, expected_starts_with: []const u8) !void { if (std.mem.startsWith(u8, actual, expected_starts_with)) return; const shortened_actual = if (actual.len >= expected_starts_with.len) actual[0..expected_starts_with.len] else actual; print("\n====== expected to start with: =========\n", .{}); printWithVisibleNewlines(expected_starts_with); print("\n====== instead started with: ===========\n", .{}); printWithVisibleNewlines(shortened_actual); print("\n========= full output: ==============\n", .{}); printWithVisibleNewlines(actual); print("\n======================================\n", .{}); return error.TestExpectedStartsWith; } |
expectStringEndsWith() |
pub fn expectStringEndsWith(actual: []const u8, expected_ends_with: []const u8) !void { if (std.mem.endsWith(u8, actual, expected_ends_with)) return; const shortened_actual = if (actual.len >= expected_ends_with.len) actual[(actual.len - expected_ends_with.len)..] else actual; print("\n====== expected to end with: =========\n", .{}); printWithVisibleNewlines(expected_ends_with); print("\n====== instead ended with: ===========\n", .{}); printWithVisibleNewlines(shortened_actual); print("\n========= full output: ==============\n", .{}); printWithVisibleNewlines(actual); print("\n======================================\n", .{}); return error.TestExpectedEndsWith; } |
expectEqualDeep() This function is intended to be used only in tests. When the two values are not deeply equal, prints diagnostics to stderr to show exactly how they are not equal, then returns a test failure error. |
pub fn expectEqualDeep(expected: anytype, actual: @TypeOf(expected)) error{TestExpectedEqual}!void { switch (@typeInfo(@TypeOf(actual))) { .NoReturn, .Opaque, .Frame, .AnyFrame, => @compileError("value of type " ++ @typeName(@TypeOf(actual)) ++ " encountered"), .Undefined, .Null, .Void, => return, .Type => { if (actual != expected) { print("expected type {s}, found type {s}\n", .{ @typeName(expected), @typeName(actual) }); return error.TestExpectedEqual; } }, .Bool, .Int, .Float, .ComptimeFloat, .ComptimeInt, .EnumLiteral, .Enum, .Fn, .ErrorSet, => { if (actual != expected) { print("expected {}, found {}\n", .{ expected, actual }); return error.TestExpectedEqual; } }, .Pointer => |pointer| { switch (pointer.size) { // We have no idea what is behind those pointers, so the best we can do is `==` check. .C, .Many => { if (actual != expected) { print("expected {*}, found {*}\n", .{ expected, actual }); return error.TestExpectedEqual; } }, .One => { // Length of those pointers are runtime value, so the best we can do is `==` check. switch (@typeInfo(pointer.child)) { .Fn, .Opaque => { if (actual != expected) { print("expected {*}, found {*}\n", .{ expected, actual }); return error.TestExpectedEqual; } }, else => try expectEqualDeep(expected.*, actual.*), } }, .Slice => { if (expected.len != actual.len) { print("Slice len not the same, expected {d}, found {d}\n", .{ expected.len, actual.len }); return error.TestExpectedEqual; } var i: usize = 0; while (i < expected.len) : (i += 1) { expectEqualDeep(expected[i], actual[i]) catch |e| { print("index {d} incorrect. expected {any}, found {any}\n", .{ i, expected[i], actual[i], }); return e; }; } }, } }, .Array => |_| { if (expected.len != actual.len) { print("Array len not the same, expected {d}, found {d}\n", .{ expected.len, actual.len }); return error.TestExpectedEqual; } var i: usize = 0; while (i < expected.len) : (i += 1) { expectEqualDeep(expected[i], actual[i]) catch |e| { print("index {d} incorrect. expected {any}, found {any}\n", .{ i, expected[i], actual[i], }); return e; }; } }, .Vector => |info| { if (info.len != @typeInfo(@TypeOf(actual)).Vector.len) { print("Vector len not the same, expected {d}, found {d}\n", .{ info.len, @typeInfo(@TypeOf(actual)).Vector.len }); return error.TestExpectedEqual; } var i: usize = 0; while (i < info.len) : (i += 1) { expectEqualDeep(expected[i], actual[i]) catch |e| { print("index {d} incorrect. expected {any}, found {any}\n", .{ i, expected[i], actual[i], }); return e; }; } }, .Struct => |structType| { inline for (structType.fields) |field| { expectEqualDeep(@field(expected, field.name), @field(actual, field.name)) catch |e| { print("Field {s} incorrect. expected {any}, found {any}\n", .{ field.name, @field(expected, field.name), @field(actual, field.name) }); return e; }; } }, .Union => |union_info| { if (union_info.tag_type == null) { @compileError("Unable to compare untagged union values"); } const Tag = std.meta.Tag(@TypeOf(expected)); const expectedTag = @as(Tag, expected); const actualTag = @as(Tag, actual); try expectEqual(expectedTag, actualTag); // we only reach this loop if the tags are equal switch (expected) { inline else => |val, tag| { try expectEqualDeep(val, @field(actual, @tagName(tag))); }, } }, .Optional => { if (expected) |expected_payload| { if (actual) |actual_payload| { try expectEqualDeep(expected_payload, actual_payload); } else { print("expected {any}, found null\n", .{expected_payload}); return error.TestExpectedEqual; } } else { if (actual) |actual_payload| { print("expected null, found {any}\n", .{actual_payload}); return error.TestExpectedEqual; } } }, .ErrorUnion => { if (expected) |expected_payload| { if (actual) |actual_payload| { try expectEqualDeep(expected_payload, actual_payload); } else |actual_err| { print("expected {any}, found {any}\n", .{ expected_payload, actual_err }); return error.TestExpectedEqual; } } else |expected_err| { if (actual) |actual_payload| { print("expected {any}, found {any}\n", .{ expected_err, actual_payload }); return error.TestExpectedEqual; } else |actual_err| { try expectEqualDeep(expected_err, actual_err); } } }, } } |
Test:expectEqualDeep primitive type |
test "expectEqualDeep primitive type" { try expectEqualDeep(1, 1); try expectEqualDeep(true, true); try expectEqualDeep(1.5, 1.5); try expectEqualDeep(u8, u8); try expectEqualDeep(error.Bad, error.Bad); // optional { const foo: ?u32 = 1; const bar: ?u32 = 1; try expectEqualDeep(foo, bar); try expectEqualDeep(?u32, ?u32); } // function type { const fnType = struct { fn foo() void { unreachable; } }.foo; try expectEqualDeep(fnType, fnType); } } |
Test:expectEqualDeep pointer |
test "expectEqualDeep pointer" { const a = 1; const b = 1; try expectEqualDeep(&a, &b); } |
Test:expectEqualDeep composite type |
test "expectEqualDeep composite type" { try expectEqualDeep("abc", "abc"); const s1: []const u8 = "abc"; const s2 = "abcd"; const s3: []const u8 = s2[0..3]; try expectEqualDeep(s1, s3); const TestStruct = struct { s: []const u8 }; try expectEqualDeep(TestStruct{ .s = "abc" }, TestStruct{ .s = "abc" }); try expectEqualDeep([_][]const u8{ "a", "b", "c" }, [_][]const u8{ "a", "b", "c" }); // vector try expectEqualDeep(@as(@Vector(4, u32), @splat(4)), @as(@Vector(4, u32), @splat(4))); // nested array { const a = [2][2]f32{ [_]f32{ 1.0, 0.0 }, [_]f32{ 0.0, 1.0 }, }; const b = [2][2]f32{ [_]f32{ 1.0, 0.0 }, [_]f32{ 0.0, 1.0 }, }; try expectEqualDeep(a, b); try expectEqualDeep(&a, &b); } } fn printIndicatorLine(source: []const u8, indicator_index: usize) void { const line_begin_index = if (std.mem.lastIndexOfScalar(u8, source[0..indicator_index], '\n')) |line_begin| line_begin + 1 else 0; const line_end_index = if (std.mem.indexOfScalar(u8, source[indicator_index..], '\n')) |line_end| (indicator_index + line_end) else source.len; printLine(source[line_begin_index..line_end_index]); { var i: usize = line_begin_index; while (i < indicator_index) : (i += 1) print(" ", .{}); } if (indicator_index >= source.len) print("^ (end of string)\n", .{}) else print("^ ('\\x{x:0>2}')\n", .{source[indicator_index]}); } fn printWithVisibleNewlines(source: []const u8) void { var i: usize = 0; while (std.mem.indexOfScalar(u8, source[i..], '\n')) |nl| : (i += nl + 1) { printLine(source[i..][0..nl]); } print("{s}␃\n", .{source[i..]}); // End of Text symbol (ETX) } fn printLine(line: []const u8) void { if (line.len != 0) switch (line[line.len - 1]) { ' ', '\t' => return print("{s}⏎\n", .{line}), // Carriage return symbol, else => {}, }; print("{s}\n", .{line}); } test { try expectEqualStrings("foo", "foo"); } |
checkAllAllocationFailures() Exhaustively check that allocation failures within |
pub fn checkAllAllocationFailures(backing_allocator: std.mem.Allocator, comptime test_fn: anytype, extra_args: anytype) !void { switch (@typeInfo(@typeInfo(@TypeOf(test_fn)).Fn.return_type.?)) { .ErrorUnion => |info| { if (info.payload != void) { @compileError("Return type must be !void"); } }, else => @compileError("Return type must be !void"), } if (@typeInfo(@TypeOf(extra_args)) != .Struct) { @compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(extra_args))); } const ArgsTuple = std.meta.ArgsTuple(@TypeOf(test_fn)); const fn_args_fields = @typeInfo(ArgsTuple).Struct.fields; if (fn_args_fields.len == 0 or fn_args_fields[0].type != std.mem.Allocator) { @compileError("The provided function must have an " ++ @typeName(std.mem.Allocator) ++ " as its first argument"); } const expected_args_tuple_len = fn_args_fields.len - 1; if (extra_args.len != expected_args_tuple_len) { @compileError("The provided function expects " ++ std.fmt.comptimePrint("{d}", .{expected_args_tuple_len}) ++ " extra arguments, but the provided tuple contains " ++ std.fmt.comptimePrint("{d}", .{extra_args.len})); } // Setup the tuple that will actually be used with @call (we'll need to insert // the failing allocator in field @"0" before each @call) var args: ArgsTuple = undefined; inline for (@typeInfo(@TypeOf(extra_args)).Struct.fields, 0..) |field, i| { const arg_i_str = comptime str: { var str_buf: [100]u8 = undefined; const args_i = i + 1; const str_len = std.fmt.formatIntBuf(&str_buf, args_i, 10, .lower, .{}); break :str str_buf[0..str_len]; }; @field(args, arg_i_str) = @field(extra_args, field.name); } // Try it once with unlimited memory, make sure it works const needed_alloc_count = x: { var failing_allocator_inst = std.testing.FailingAllocator.init(backing_allocator, .{}); args.@"0" = failing_allocator_inst.allocator(); try @call(.auto, test_fn, args); break :x failing_allocator_inst.alloc_index; }; var fail_index: usize = 0; while (fail_index < needed_alloc_count) : (fail_index += 1) { var failing_allocator_inst = std.testing.FailingAllocator.init(backing_allocator, .{ .fail_index = fail_index }); args.@"0" = failing_allocator_inst.allocator(); if (@call(.auto, test_fn, args)) |_| { if (failing_allocator_inst.has_induced_failure) { return error.SwallowedOutOfMemoryError; } else { return error.NondeterministicMemoryUsage; } } else |err| switch (err) { error.OutOfMemory => { if (failing_allocator_inst.allocated_bytes != failing_allocator_inst.freed_bytes) { print( "\nfail_index: {d}/{d}\nallocated bytes: {d}\nfreed bytes: {d}\nallocations: {d}\ndeallocations: {d}\nallocation that was made to fail: {}", .{ fail_index, needed_alloc_count, failing_allocator_inst.allocated_bytes, failing_allocator_inst.freed_bytes, failing_allocator_inst.allocations, failing_allocator_inst.deallocations, failing_allocator_inst.getStackTrace(), }, ); return error.MemoryLeakDetected; } }, else => return err, } } } |
refAllDecls()Given a type, references all the declarations inside, so that the semantic analyzer sees them. |
pub fn refAllDecls(comptime T: type) void { if (!builtin.is_test) return; inline for (comptime std.meta.declarations(T)) |decl| { _ = &@field(T, decl.name); } } |
refAllDeclsRecursive() Given a type, recursively references all the declarations inside, so that the semantic analyzer sees them. For deep types, you may use |
pub fn refAllDeclsRecursive(comptime T: type) void { if (!builtin.is_test) return; inline for (comptime std.meta.declarations(T)) |decl| { if (@TypeOf(@field(T, decl.name)) == type) { switch (@typeInfo(@field(T, decl.name))) { .Struct, .Enum, .Union, .Opaque => refAllDeclsRecursive(@field(T, decl.name)), else => {}, } } _ = &@field(T, decl.name); } } |
Generated by zstd-browse2 on 2023-11-04 14:12:33 -0400. |