zig/lib/std / testing.zig

const std = @import("std.zig");
const builtin = @import("builtin");

const math = std.math;

FailingAllocator

testing/failing_allocator.zig
pub const FailingAllocator = @import("testing/failing_allocator.zig").FailingAllocator;

allocator

This should only be used in temporary test programs.

pub const allocator = allocator_instance.allocator();
pub var allocator_instance = b: {
    if (!builtin.is_test)
        @compileError("Cannot use testing allocator outside of test block");
    break :b std.heap.GeneralPurposeAllocator(.{}){};
};

failing_allocator

pub const failing_allocator = failing_allocator_instance.allocator();
pub var failing_allocator_instance = FailingAllocator.init(base_allocator_instance.allocator(), .{ .fail_index = 0 });

pub var base_allocator_instance = std.heap.FixedBufferAllocator.init("");

pub var log_level = std.log.Level.warn;

// Disable printing in tests for simple backends.

backend_can_print

TODO https://github.com/ziglang/zig/issues/5738

pub const backend_can_print = builtin.zig_backend != .stage2_spirv64;

fn print(comptime fmt: []const u8, args: anytype) void {
    if (@inComptime()) {
        @compileError(std.fmt.comptimePrint(fmt, args));
    } else if (backend_can_print) {
        std.debug.print(fmt, args);
    }
}

expectError()

This function is intended to be used only in tests. It prints diagnostics to stderr and then returns a test failure error when actual_error_union is not expected_error.

pub fn expectError(expected_error: anyerror, actual_error_union: anytype) !void {
    if (actual_error_union) |actual_payload| {
        print("expected error.{s}, found {any}\n", .{ @errorName(expected_error), actual_payload });
        return error.TestUnexpectedError;
    } else |actual_error| {
        if (expected_error != actual_error) {
            print("expected error.{s}, found error.{s}\n", .{
                @errorName(expected_error),
                @errorName(actual_error),
            });
            return error.TestExpectedError;
        }
    }
}

expectEqual()

This function is intended to be used only in tests. When the two values are not equal, prints diagnostics to stderr to show exactly how they are not equal, then returns a test failure error. actual is casted to the type of expected.

pub fn expectEqual(expected: anytype, actual: @TypeOf(expected)) !void {
    switch (@typeInfo(@TypeOf(actual))) {
        .NoReturn,
        .Opaque,
        .Frame,
        .AnyFrame,
        => @compileError("value of type " ++ @typeName(@TypeOf(actual)) ++ " encountered"),

        .Undefined,
        .Null,
        .Void,
        => return,

        .Type => {
            if (actual != expected) {
                print("expected type {s}, found type {s}\n", .{ @typeName(expected), @typeName(actual) });
                return error.TestExpectedEqual;
            }
        },

        .Bool,
        .Int,
        .Float,
        .ComptimeFloat,
        .ComptimeInt,
        .EnumLiteral,
        .Enum,
        .Fn,
        .ErrorSet,
        => {
            if (actual != expected) {
                print("expected {}, found {}\n", .{ expected, actual });
                return error.TestExpectedEqual;
            }
        },

        .Pointer => |pointer| {
            switch (pointer.size) {
                .One, .Many, .C => {
                    if (actual != expected) {
                        print("expected {*}, found {*}\n", .{ expected, actual });
                        return error.TestExpectedEqual;
                    }
                },
                .Slice => {
                    if (actual.ptr != expected.ptr) {
                        print("expected slice ptr {*}, found {*}\n", .{ expected.ptr, actual.ptr });
                        return error.TestExpectedEqual;
                    }
                    if (actual.len != expected.len) {
                        print("expected slice len {}, found {}\n", .{ expected.len, actual.len });
                        return error.TestExpectedEqual;
                    }
                },
            }
        },

        .Array => |array| try expectEqualSlices(array.child, &expected, &actual),

        .Vector => |info| {
            var i: usize = 0;
            while (i < info.len) : (i += 1) {
                if (!std.meta.eql(expected[i], actual[i])) {
                    print("index {} incorrect. expected {}, found {}\n", .{
                        i, expected[i], actual[i],
                    });
                    return error.TestExpectedEqual;
                }
            }
        },

        .Struct => |structType| {
            inline for (structType.fields) |field| {
                try expectEqual(@field(expected, field.name), @field(actual, field.name));
            }
        },

        .Union => |union_info| {
            if (union_info.tag_type == null) {
                @compileError("Unable to compare untagged union values");
            }

            const Tag = std.meta.Tag(@TypeOf(expected));

            const expectedTag = @as(Tag, expected);
            const actualTag = @as(Tag, actual);

            try expectEqual(expectedTag, actualTag);

            // we only reach this loop if the tags are equal
            inline for (std.meta.fields(@TypeOf(actual))) |fld| {
                if (std.mem.eql(u8, fld.name, @tagName(actualTag))) {
                    try expectEqual(@field(expected, fld.name), @field(actual, fld.name));
                    return;
                }
            }

            // we iterate over *all* union fields
            // => we should never get here as the loop above is
            //    including all possible values.
            unreachable;
        },

        .Optional => {
            if (expected) |expected_payload| {
                if (actual) |actual_payload| {
                    try expectEqual(expected_payload, actual_payload);
                } else {
                    print("expected {any}, found null\n", .{expected_payload});
                    return error.TestExpectedEqual;
                }
            } else {
                if (actual) |actual_payload| {
                    print("expected null, found {any}\n", .{actual_payload});
                    return error.TestExpectedEqual;
                }
            }
        },

        .ErrorUnion => {
            if (expected) |expected_payload| {
                if (actual) |actual_payload| {
                    try expectEqual(expected_payload, actual_payload);
                } else |actual_err| {
                    print("expected {any}, found {}\n", .{ expected_payload, actual_err });
                    return error.TestExpectedEqual;
                }
            } else |expected_err| {
                if (actual) |actual_payload| {
                    print("expected {}, found {any}\n", .{ expected_err, actual_payload });
                    return error.TestExpectedEqual;
                } else |actual_err| {
                    try expectEqual(expected_err, actual_err);
                }
            }
        },
    }
}

Test:

expectEqual.union(enum)

test "expectEqual.union(enum)" {
    const T = union(enum) {
        a: i32,
        b: f32,
    };

    const a10 = T{ .a = 10 };

    try expectEqual(a10, a10);
}

expectFmt()

This function is intended to be used only in tests. When the formatted result of the template and its arguments does not equal the expected text, it prints diagnostics to stderr to show how they are not equal, then returns an error.

pub fn expectFmt(expected: []const u8, comptime template: []const u8, args: anytype) !void {
    const result = try std.fmt.allocPrint(allocator, template, args);
    defer allocator.free(result);
    if (std.mem.eql(u8, result, expected)) return;

    print("\n====== expected this output: =========\n", .{});
    print("{s}", .{expected});
    print("\n======== instead found this: =========\n", .{});
    print("{s}", .{result});
    print("\n======================================\n", .{});
    return error.TestExpectedFmt;
}

expectApproxEqAbs()

This function is intended to be used only in tests. When the actual value is not approximately equal to the expected value, prints diagnostics to stderr to show exactly how they are not equal, then returns a test failure error. See math.approxEqAbs for more information on the tolerance parameter. The types must be floating-point.

pub fn expectApproxEqAbs(expected: anytype, actual: @TypeOf(expected), tolerance: @TypeOf(expected)) !void {
    const T = @TypeOf(expected);

    switch (@typeInfo(T)) {
        .Float => if (!math.approxEqAbs(T, expected, actual, tolerance)) {
            print("actual {}, not within absolute tolerance {} of expected {}\n", .{ actual, tolerance, expected });
            return error.TestExpectedApproxEqAbs;
        },

        .ComptimeFloat => @compileError("Cannot approximately compare two comptime_float values"),

        else => @compileError("Unable to compare non floating point values"),
    }
}

Test:

expectApproxEqAbs

test "expectApproxEqAbs" {
    inline for ([_]type{ f16, f32, f64, f128 }) |T| {
        const pos_x: T = 12.0;
        const pos_y: T = 12.06;
        const neg_x: T = -12.0;
        const neg_y: T = -12.06;

        try expectApproxEqAbs(pos_x, pos_y, 0.1);
        try expectApproxEqAbs(neg_x, neg_y, 0.1);
    }
}

expectApproxEqRel()

This function is intended to be used only in tests. When the actual value is not approximately equal to the expected value, prints diagnostics to stderr to show exactly how they are not equal, then returns a test failure error. See math.approxEqRel for more information on the tolerance parameter. The types must be floating-point.

pub fn expectApproxEqRel(expected: anytype, actual: @TypeOf(expected), tolerance: @TypeOf(expected)) !void {
    const T = @TypeOf(expected);

    switch (@typeInfo(T)) {
        .Float => if (!math.approxEqRel(T, expected, actual, tolerance)) {
            print("actual {}, not within relative tolerance {} of expected {}\n", .{ actual, tolerance, expected });
            return error.TestExpectedApproxEqRel;
        },

        .ComptimeFloat => @compileError("Cannot approximately compare two comptime_float values"),

        else => @compileError("Unable to compare non floating point values"),
    }
}

Test:

expectApproxEqRel

test "expectApproxEqRel" {
    inline for ([_]type{ f16, f32, f64, f128 }) |T| {
        const eps_value = comptime math.floatEps(T);
        const sqrt_eps_value = comptime @sqrt(eps_value);

        const pos_x: T = 12.0;
        const pos_y: T = pos_x + 2 * eps_value;
        const neg_x: T = -12.0;
        const neg_y: T = neg_x - 2 * eps_value;

        try expectApproxEqRel(pos_x, pos_y, sqrt_eps_value);
        try expectApproxEqRel(neg_x, neg_y, sqrt_eps_value);
    }
}

expectEqualSlices()

This function is intended to be used only in tests. When the two slices are not equal, prints diagnostics to stderr to show exactly how they are not equal (with the differences highlighted in red), then returns a test failure error. The colorized output is optional and controlled by the return of std.io.tty.detectConfig(). If your inputs are UTF-8 encoded strings, consider calling expectEqualStrings instead.

pub fn expectEqualSlices(comptime T: type, expected: []const T, actual: []const T) !void {
    if (expected.ptr == actual.ptr and expected.len == actual.len) {
        return;
    }
    const diff_index: usize = diff_index: {
        const shortest = @min(expected.len, actual.len);
        var index: usize = 0;
        while (index < shortest) : (index += 1) {
            if (!std.meta.eql(actual[index], expected[index])) break :diff_index index;
        }
        break :diff_index if (expected.len == actual.len) return else shortest;
    };

    if (!backend_can_print) {
        return error.TestExpectedEqual;
    }

    print("slices differ. first difference occurs at index {d} (0x{X})\n", .{ diff_index, diff_index });

    // TODO: Should this be configurable by the caller?
    const max_lines: usize = 16;
    const max_window_size: usize = if (T == u8) max_lines * 16 else max_lines;

    // Print a maximum of max_window_size items of each input, starting just before the
    // first difference to give a bit of context.
    var window_start: usize = 0;
    if (@max(actual.len, expected.len) > max_window_size) {
        const alignment = if (T == u8) 16 else 2;
        window_start = std.mem.alignBackward(usize, diff_index - @min(diff_index, alignment), alignment);
    }
    const expected_window = expected[window_start..@min(expected.len, window_start + max_window_size)];
    const expected_truncated = window_start + expected_window.len < expected.len;
    const actual_window = actual[window_start..@min(actual.len, window_start + max_window_size)];
    const actual_truncated = window_start + actual_window.len < actual.len;

    const ttyconf = std.io.tty.detectConfig(std.io.getStdErr());
    var differ = if (T == u8) BytesDiffer{
        .expected = expected_window,
        .actual = actual_window,
        .ttyconf = ttyconf,
    } else SliceDiffer(T){
        .start_index = window_start,
        .expected = expected_window,
        .actual = actual_window,
        .ttyconf = ttyconf,
    };
    const stderr = std.io.getStdErr();

    // Print indexes as hex for slices of u8 since it's more likely to be binary data where
    // that is usually useful.
    const index_fmt = if (T == u8) "0x{X}" else "{}";

    print("\n============ expected this output: =============  len: {} (0x{X})\n\n", .{ expected.len, expected.len });
    if (window_start > 0) {
        if (T == u8) {
            print("... truncated, start index: " ++ index_fmt ++ " ...\n", .{window_start});
        } else {
            print("... truncated ...\n", .{});
        }
    }
    differ.write(stderr.writer()) catch {};
    if (expected_truncated) {
        const end_offset = window_start + expected_window.len;
        const num_missing_items = expected.len - (window_start + expected_window.len);
        if (T == u8) {
            print("... truncated, indexes [" ++ index_fmt ++ "..] not shown, remaining bytes: " ++ index_fmt ++ " ...\n", .{ end_offset, num_missing_items });
        } else {
            print("... truncated, remaining items: " ++ index_fmt ++ " ...\n", .{num_missing_items});
        }
    }

    // now reverse expected/actual and print again
    differ.expected = actual_window;
    differ.actual = expected_window;
    print("\n============= instead found this: ==============  len: {} (0x{X})\n\n", .{ actual.len, actual.len });
    if (window_start > 0) {
        if (T == u8) {
            print("... truncated, start index: " ++ index_fmt ++ " ...\n", .{window_start});
        } else {
            print("... truncated ...\n", .{});
        }
    }
    differ.write(stderr.writer()) catch {};
    if (actual_truncated) {
        const end_offset = window_start + actual_window.len;
        const num_missing_items = actual.len - (window_start + actual_window.len);
        if (T == u8) {
            print("... truncated, indexes [" ++ index_fmt ++ "..] not shown, remaining bytes: " ++ index_fmt ++ " ...\n", .{ end_offset, num_missing_items });
        } else {
            print("... truncated, remaining items: " ++ index_fmt ++ " ...\n", .{num_missing_items});
        }
    }
    print("\n================================================\n\n", .{});

    return error.TestExpectedEqual;
}

fn SliceDiffer(comptime T: type) type {
    return struct {
        start_index: usize,
        expected: []const T,
        actual: []const T,
        ttyconf: std.io.tty.Config,

        const Self = @This();

write()

        pub fn write(self: Self, writer: anytype) !void {
            for (self.expected, 0..) |value, i| {
                var full_index = self.start_index + i;
                const diff = if (i < self.actual.len) !std.meta.eql(self.actual[i], value) else true;
                if (diff) try self.ttyconf.setColor(writer, .red);
                if (@typeInfo(T) == .Pointer) {
                    try writer.print("[{}]{*}: {any}\n", .{ full_index, value, value });
                } else {
                    try writer.print("[{}]: {any}\n", .{ full_index, value });
                }
                if (diff) try self.ttyconf.setColor(writer, .reset);
            }
        }
    };
}

const BytesDiffer = struct {
    expected: []const u8,
    actual: []const u8,
    ttyconf: std.io.tty.Config,

write()

    pub fn write(self: BytesDiffer, writer: anytype) !void {
        var expected_iterator = ChunkIterator{ .bytes = self.expected };
        while (expected_iterator.next()) |chunk| {
            // to avoid having to calculate diffs twice per chunk
            var diffs: std.bit_set.IntegerBitSet(16) = .{ .mask = 0 };
            for (chunk, 0..) |byte, i| {
                var absolute_byte_index = (expected_iterator.index - chunk.len) + i;
                const diff = if (absolute_byte_index < self.actual.len) self.actual[absolute_byte_index] != byte else true;
                if (diff) diffs.set(i);
                try self.writeByteDiff(writer, "{X:0>2} ", byte, diff);
                if (i == 7) try writer.writeByte(' ');
            }
            try writer.writeByte(' ');
            if (chunk.len < 16) {
                var missing_columns = (16 - chunk.len) * 3;
                if (chunk.len < 8) missing_columns += 1;
                try writer.writeByteNTimes(' ', missing_columns);
            }
            for (chunk, 0..) |byte, i| {
                const byte_to_print = if (std.ascii.isPrint(byte)) byte else '.';
                try self.writeByteDiff(writer, "{c}", byte_to_print, diffs.isSet(i));
            }
            try writer.writeByte('\n');
        }
    }

    fn writeByteDiff(self: BytesDiffer, writer: anytype, comptime fmt: []const u8, byte: u8, diff: bool) !void {
        if (diff) try self.ttyconf.setColor(writer, .red);
        try writer.print(fmt, .{byte});
        if (diff) try self.ttyconf.setColor(writer, .reset);
    }

    const ChunkIterator = struct {
        bytes: []const u8,
        index: usize = 0,

next()

        pub fn next(self: *ChunkIterator) ?[]const u8 {
            if (self.index == self.bytes.len) return null;

            const start_index = self.index;
            const end_index = @min(self.bytes.len, start_index + 16);
            self.index = end_index;
            return self.bytes[start_index..end_index];
        }
    };
};

test {
    try expectEqualSlices(u8, "foo\x00", "foo\x00");
    try expectEqualSlices(u16, &[_]u16{ 100, 200, 300, 400 }, &[_]u16{ 100, 200, 300, 400 });
    const E = enum { foo, bar };
    const S = struct {
        v: E,
    };
    try expectEqualSlices(
        S,
        &[_]S{ .{ .v = .foo }, .{ .v = .bar }, .{ .v = .foo }, .{ .v = .bar } },
        &[_]S{ .{ .v = .foo }, .{ .v = .bar }, .{ .v = .foo }, .{ .v = .bar } },
    );
}

expectEqualSentinel()

This function is intended to be used only in tests. Checks that two slices or two arrays are equal, including that their sentinel (if any) are the same. Will error if given another type.

pub fn expectEqualSentinel(comptime T: type, comptime sentinel: T, expected: [:sentinel]const T, actual: [:sentinel]const T) !void {
    try expectEqualSlices(T, expected, actual);

    const expected_value_sentinel = blk: {
        switch (@typeInfo(@TypeOf(expected))) {
            .Pointer => {
                break :blk expected[expected.len];
            },
            .Array => |array_info| {
                const indexable_outside_of_bounds = @as([]const array_info.child, &expected);
                break :blk indexable_outside_of_bounds[indexable_outside_of_bounds.len];
            },
            else => {},
        }
    };

    const actual_value_sentinel = blk: {
        switch (@typeInfo(@TypeOf(actual))) {
            .Pointer => {
                break :blk actual[actual.len];
            },
            .Array => |array_info| {
                const indexable_outside_of_bounds = @as([]const array_info.child, &actual);
                break :blk indexable_outside_of_bounds[indexable_outside_of_bounds.len];
            },
            else => {},
        }
    };

    if (!std.meta.eql(sentinel, expected_value_sentinel)) {
        print("expectEqualSentinel: 'expected' sentinel in memory is different from its type sentinel. type sentinel {}, in memory sentinel {}\n", .{ sentinel, expected_value_sentinel });
        return error.TestExpectedEqual;
    }

    if (!std.meta.eql(sentinel, actual_value_sentinel)) {
        print("expectEqualSentinel: 'actual' sentinel in memory is different from its type sentinel. type sentinel {}, in memory sentinel {}\n", .{ sentinel, actual_value_sentinel });
        return error.TestExpectedEqual;
    }
}

expect()

This function is intended to be used only in tests. When ok is false, returns a test failure error.

pub fn expect(ok: bool) !void {
    if (!ok) return error.TestUnexpectedResult;
}

TmpDir

pub const TmpDir = struct {
    dir: std.fs.Dir,
    parent_dir: std.fs.Dir,
    sub_path: [sub_path_len]u8,

    const random_bytes_count = 12;
    const sub_path_len = std.fs.base64_encoder.calcSize(random_bytes_count);

cleanup()

    pub fn cleanup(self: *TmpDir) void {
        self.dir.close();
        self.parent_dir.deleteTree(&self.sub_path) catch {};
        self.parent_dir.close();
        self.* = undefined;
    }
};

TmpIterableDir

pub const TmpIterableDir = struct {
    iterable_dir: std.fs.IterableDir,
    parent_dir: std.fs.Dir,
    sub_path: [sub_path_len]u8,

    const random_bytes_count = 12;
    const sub_path_len = std.fs.base64_encoder.calcSize(random_bytes_count);

cleanup()

    pub fn cleanup(self: *TmpIterableDir) void {
        self.iterable_dir.close();
        self.parent_dir.deleteTree(&self.sub_path) catch {};
        self.parent_dir.close();
        self.* = undefined;
    }
};

tmpDir()

pub fn tmpDir(opts: std.fs.Dir.OpenDirOptions) TmpDir {
    var random_bytes: [TmpDir.random_bytes_count]u8 = undefined;
    std.crypto.random.bytes(&random_bytes);
    var sub_path: [TmpDir.sub_path_len]u8 = undefined;
    _ = std.fs.base64_encoder.encode(&sub_path, &random_bytes);

    var cwd = std.fs.cwd();
    var cache_dir = cwd.makeOpenPath("zig-cache", .{}) catch
        @panic("unable to make tmp dir for testing: unable to make and open zig-cache dir");
    defer cache_dir.close();
    var parent_dir = cache_dir.makeOpenPath("tmp", .{}) catch
        @panic("unable to make tmp dir for testing: unable to make and open zig-cache/tmp dir");
    var dir = parent_dir.makeOpenPath(&sub_path, opts) catch
        @panic("unable to make tmp dir for testing: unable to make and open the tmp dir");

    return .{
        .dir = dir,
        .parent_dir = parent_dir,
        .sub_path = sub_path,
    };
}

tmpIterableDir()

pub fn tmpIterableDir(opts: std.fs.Dir.OpenDirOptions) TmpIterableDir {
    var random_bytes: [TmpIterableDir.random_bytes_count]u8 = undefined;
    std.crypto.random.bytes(&random_bytes);
    var sub_path: [TmpIterableDir.sub_path_len]u8 = undefined;
    _ = std.fs.base64_encoder.encode(&sub_path, &random_bytes);

    var cwd = std.fs.cwd();
    var cache_dir = cwd.makeOpenPath("zig-cache", .{}) catch
        @panic("unable to make tmp dir for testing: unable to make and open zig-cache dir");
    defer cache_dir.close();
    var parent_dir = cache_dir.makeOpenPath("tmp", .{}) catch
        @panic("unable to make tmp dir for testing: unable to make and open zig-cache/tmp dir");
    var dir = parent_dir.makeOpenPathIterable(&sub_path, opts) catch
        @panic("unable to make tmp dir for testing: unable to make and open the tmp dir");

    return .{
        .iterable_dir = dir,
        .parent_dir = parent_dir,
        .sub_path = sub_path,
    };
}

Test:

expectEqual nested array

test "expectEqual nested array" {
    const a = [2][2]f32{
        [_]f32{ 1.0, 0.0 },
        [_]f32{ 0.0, 1.0 },
    };

    const b = [2][2]f32{
        [_]f32{ 1.0, 0.0 },
        [_]f32{ 0.0, 1.0 },
    };

    try expectEqual(a, b);
}

Test:

expectEqual vector

test "expectEqual vector" {
    var a: @Vector(4, u32) = @splat(4);
    var b: @Vector(4, u32) = @splat(4);

    try expectEqual(a, b);
}

expectEqualStrings()

pub fn expectEqualStrings(expected: []const u8, actual: []const u8) !void {
    if (std.mem.indexOfDiff(u8, actual, expected)) |diff_index| {
        print("\n====== expected this output: =========\n", .{});
        printWithVisibleNewlines(expected);
        print("\n======== instead found this: =========\n", .{});
        printWithVisibleNewlines(actual);
        print("\n======================================\n", .{});

        var diff_line_number: usize = 1;
        for (expected[0..diff_index]) |value| {
            if (value == '\n') diff_line_number += 1;
        }
        print("First difference occurs on line {d}:\n", .{diff_line_number});

        print("expected:\n", .{});
        printIndicatorLine(expected, diff_index);

        print("found:\n", .{});
        printIndicatorLine(actual, diff_index);

        return error.TestExpectedEqual;
    }
}

expectStringStartsWith()

pub fn expectStringStartsWith(actual: []const u8, expected_starts_with: []const u8) !void {
    if (std.mem.startsWith(u8, actual, expected_starts_with))
        return;

    const shortened_actual = if (actual.len >= expected_starts_with.len)
        actual[0..expected_starts_with.len]
    else
        actual;

    print("\n====== expected to start with: =========\n", .{});
    printWithVisibleNewlines(expected_starts_with);
    print("\n====== instead started with: ===========\n", .{});
    printWithVisibleNewlines(shortened_actual);
    print("\n========= full output: ==============\n", .{});
    printWithVisibleNewlines(actual);
    print("\n======================================\n", .{});

    return error.TestExpectedStartsWith;
}

expectStringEndsWith()

pub fn expectStringEndsWith(actual: []const u8, expected_ends_with: []const u8) !void {
    if (std.mem.endsWith(u8, actual, expected_ends_with))
        return;

    const shortened_actual = if (actual.len >= expected_ends_with.len)
        actual[(actual.len - expected_ends_with.len)..]
    else
        actual;

    print("\n====== expected to end with: =========\n", .{});
    printWithVisibleNewlines(expected_ends_with);
    print("\n====== instead ended with: ===========\n", .{});
    printWithVisibleNewlines(shortened_actual);
    print("\n========= full output: ==============\n", .{});
    printWithVisibleNewlines(actual);
    print("\n======================================\n", .{});

    return error.TestExpectedEndsWith;
}

expectEqualDeep()

This function is intended to be used only in tests. When the two values are not deeply equal, prints diagnostics to stderr to show exactly how they are not equal, then returns a test failure error. actual is casted to the type of expected.

Deeply equal is defined as follows: Primitive types are deeply equal if they are equal using == operator. Struct values are deeply equal if their corresponding fields are deeply equal. Container types(like Array/Slice/Vector) deeply equal when their corresponding elements are deeply equal. Pointer values are deeply equal if values they point to are deeply equal.

Note: Self-referential structs are supported (e.g. things like std.SinglyLinkedList) but may cause infinite recursion or stack overflow when a container has a pointer to itself.

pub fn expectEqualDeep(expected: anytype, actual: @TypeOf(expected)) error{TestExpectedEqual}!void {
    switch (@typeInfo(@TypeOf(actual))) {
        .NoReturn,
        .Opaque,
        .Frame,
        .AnyFrame,
        => @compileError("value of type " ++ @typeName(@TypeOf(actual)) ++ " encountered"),

        .Undefined,
        .Null,
        .Void,
        => return,

        .Type => {
            if (actual != expected) {
                print("expected type {s}, found type {s}\n", .{ @typeName(expected), @typeName(actual) });
                return error.TestExpectedEqual;
            }
        },

        .Bool,
        .Int,
        .Float,
        .ComptimeFloat,
        .ComptimeInt,
        .EnumLiteral,
        .Enum,
        .Fn,
        .ErrorSet,
        => {
            if (actual != expected) {
                print("expected {}, found {}\n", .{ expected, actual });
                return error.TestExpectedEqual;
            }
        },

        .Pointer => |pointer| {
            switch (pointer.size) {
                // We have no idea what is behind those pointers, so the best we can do is `==` check.
                .C, .Many => {
                    if (actual != expected) {
                        print("expected {*}, found {*}\n", .{ expected, actual });
                        return error.TestExpectedEqual;
                    }
                },
                .One => {
                    // Length of those pointers are runtime value, so the best we can do is `==` check.
                    switch (@typeInfo(pointer.child)) {
                        .Fn, .Opaque => {
                            if (actual != expected) {
                                print("expected {*}, found {*}\n", .{ expected, actual });
                                return error.TestExpectedEqual;
                            }
                        },
                        else => try expectEqualDeep(expected.*, actual.*),
                    }
                },
                .Slice => {
                    if (expected.len != actual.len) {
                        print("Slice len not the same, expected {d}, found {d}\n", .{ expected.len, actual.len });
                        return error.TestExpectedEqual;
                    }
                    var i: usize = 0;
                    while (i < expected.len) : (i += 1) {
                        expectEqualDeep(expected[i], actual[i]) catch |e| {
                            print("index {d} incorrect. expected {any}, found {any}\n", .{
                                i, expected[i], actual[i],
                            });
                            return e;
                        };
                    }
                },
            }
        },

        .Array => |_| {
            if (expected.len != actual.len) {
                print("Array len not the same, expected {d}, found {d}\n", .{ expected.len, actual.len });
                return error.TestExpectedEqual;
            }
            var i: usize = 0;
            while (i < expected.len) : (i += 1) {
                expectEqualDeep(expected[i], actual[i]) catch |e| {
                    print("index {d} incorrect. expected {any}, found {any}\n", .{
                        i, expected[i], actual[i],
                    });
                    return e;
                };
            }
        },

        .Vector => |info| {
            if (info.len != @typeInfo(@TypeOf(actual)).Vector.len) {
                print("Vector len not the same, expected {d}, found {d}\n", .{ info.len, @typeInfo(@TypeOf(actual)).Vector.len });
                return error.TestExpectedEqual;
            }
            var i: usize = 0;
            while (i < info.len) : (i += 1) {
                expectEqualDeep(expected[i], actual[i]) catch |e| {
                    print("index {d} incorrect. expected {any}, found {any}\n", .{
                        i, expected[i], actual[i],
                    });
                    return e;
                };
            }
        },

        .Struct => |structType| {
            inline for (structType.fields) |field| {
                expectEqualDeep(@field(expected, field.name), @field(actual, field.name)) catch |e| {
                    print("Field {s} incorrect. expected {any}, found {any}\n", .{ field.name, @field(expected, field.name), @field(actual, field.name) });
                    return e;
                };
            }
        },

        .Union => |union_info| {
            if (union_info.tag_type == null) {
                @compileError("Unable to compare untagged union values");
            }

            const Tag = std.meta.Tag(@TypeOf(expected));

            const expectedTag = @as(Tag, expected);
            const actualTag = @as(Tag, actual);

            try expectEqual(expectedTag, actualTag);

            // we only reach this loop if the tags are equal
            switch (expected) {
                inline else => |val, tag| {
                    try expectEqualDeep(val, @field(actual, @tagName(tag)));
                },
            }
        },

        .Optional => {
            if (expected) |expected_payload| {
                if (actual) |actual_payload| {
                    try expectEqualDeep(expected_payload, actual_payload);
                } else {
                    print("expected {any}, found null\n", .{expected_payload});
                    return error.TestExpectedEqual;
                }
            } else {
                if (actual) |actual_payload| {
                    print("expected null, found {any}\n", .{actual_payload});
                    return error.TestExpectedEqual;
                }
            }
        },

        .ErrorUnion => {
            if (expected) |expected_payload| {
                if (actual) |actual_payload| {
                    try expectEqualDeep(expected_payload, actual_payload);
                } else |actual_err| {
                    print("expected {any}, found {any}\n", .{ expected_payload, actual_err });
                    return error.TestExpectedEqual;
                }
            } else |expected_err| {
                if (actual) |actual_payload| {
                    print("expected {any}, found {any}\n", .{ expected_err, actual_payload });
                    return error.TestExpectedEqual;
                } else |actual_err| {
                    try expectEqualDeep(expected_err, actual_err);
                }
            }
        },
    }
}

Test:

expectEqualDeep primitive type

test "expectEqualDeep primitive type" {
    try expectEqualDeep(1, 1);
    try expectEqualDeep(true, true);
    try expectEqualDeep(1.5, 1.5);
    try expectEqualDeep(u8, u8);
    try expectEqualDeep(error.Bad, error.Bad);

    // optional
    {
        const foo: ?u32 = 1;
        const bar: ?u32 = 1;
        try expectEqualDeep(foo, bar);
        try expectEqualDeep(?u32, ?u32);
    }
    // function type
    {
        const fnType = struct {
            fn foo() void {
                unreachable;
            }
        }.foo;
        try expectEqualDeep(fnType, fnType);
    }
}

Test:

expectEqualDeep pointer

test "expectEqualDeep pointer" {
    const a = 1;
    const b = 1;
    try expectEqualDeep(&a, &b);
}

Test:

expectEqualDeep composite type

test "expectEqualDeep composite type" {
    try expectEqualDeep("abc", "abc");
    const s1: []const u8 = "abc";
    const s2 = "abcd";
    const s3: []const u8 = s2[0..3];
    try expectEqualDeep(s1, s3);

    const TestStruct = struct { s: []const u8 };
    try expectEqualDeep(TestStruct{ .s = "abc" }, TestStruct{ .s = "abc" });
    try expectEqualDeep([_][]const u8{ "a", "b", "c" }, [_][]const u8{ "a", "b", "c" });

    // vector
    try expectEqualDeep(@as(@Vector(4, u32), @splat(4)), @as(@Vector(4, u32), @splat(4)));

    // nested array
    {
        const a = [2][2]f32{
            [_]f32{ 1.0, 0.0 },
            [_]f32{ 0.0, 1.0 },
        };

        const b = [2][2]f32{
            [_]f32{ 1.0, 0.0 },
            [_]f32{ 0.0, 1.0 },
        };

        try expectEqualDeep(a, b);
        try expectEqualDeep(&a, &b);
    }
}

fn printIndicatorLine(source: []const u8, indicator_index: usize) void {
    const line_begin_index = if (std.mem.lastIndexOfScalar(u8, source[0..indicator_index], '\n')) |line_begin|
        line_begin + 1
    else
        0;
    const line_end_index = if (std.mem.indexOfScalar(u8, source[indicator_index..], '\n')) |line_end|
        (indicator_index + line_end)
    else
        source.len;

    printLine(source[line_begin_index..line_end_index]);
    {
        var i: usize = line_begin_index;
        while (i < indicator_index) : (i += 1)
            print(" ", .{});
    }
    if (indicator_index >= source.len)
        print("^ (end of string)\n", .{})
    else
        print("^ ('\\x{x:0>2}')\n", .{source[indicator_index]});
}

fn printWithVisibleNewlines(source: []const u8) void {
    var i: usize = 0;
    while (std.mem.indexOfScalar(u8, source[i..], '\n')) |nl| : (i += nl + 1) {
        printLine(source[i..][0..nl]);
    }
    print("{s}␃\n", .{source[i..]}); // End of Text symbol (ETX)
}

fn printLine(line: []const u8) void {
    if (line.len != 0) switch (line[line.len - 1]) {
        ' ', '\t' => return print("{s}⏎\n", .{line}), // Carriage return symbol,
        else => {},
    };
    print("{s}\n", .{line});
}

test {
    try expectEqualStrings("foo", "foo");
}

checkAllAllocationFailures()

Exhaustively check that allocation failures within test_fn are handled without introducing memory leaks. If used with the testing.allocator as the backing_allocator, it will also be able to detect double frees, etc (when runtime safety is enabled).

The provided test_fn must have a std.mem.Allocator as its first argument, and must have a return type of !void. Any extra arguments of test_fn can be provided via the extra_args tuple.

Any relevant state shared between runs of test_fn *must* be reset within test_fn.

The strategy employed is to: - Run the test function once to get the total number of allocations. - Then, iterate and run the function X more times, incrementing the failing index each iteration (where X is the total number of allocations determined previously)

Expects that test_fn has a deterministic number of memory allocations: - If an allocation was made to fail during a run of test_fn, but test_fn didn't return error.OutOfMemory, then error.SwallowedOutOfMemoryError is returned from checkAllAllocationFailures. You may want to ignore this depending on whether or not the code you're testing includes some strategies for recovering from error.OutOfMemory. - If a run of test_fn with an expected allocation failure executes without an allocation failure being induced, then error.NondeterministicMemoryUsage is returned. This error means that there are allocation points that won't be tested by the strategy this function employs (that is, there are sometimes more points of allocation than the initial run of test_fn detects).

---

Here's an example using a simple test case that will cause a leak when the allocation of bar fails (but will pass normally):

```zig test { const length: usize = 10; const allocator = std.testing.allocator; var foo = try allocator.alloc(u8, length); var bar = try allocator.alloc(u8, length);

allocator.free(foo); allocator.free(bar); } ```

The test case can be converted to something that this function can use by doing:

```zig fn testImpl(allocator: std.mem.Allocator, length: usize) !void { var foo = try allocator.alloc(u8, length); var bar = try allocator.alloc(u8, length);

allocator.free(foo); allocator.free(bar); }

test { const length: usize = 10; const allocator = std.testing.allocator; try std.testing.checkAllAllocationFailures(allocator, testImpl, .{length}); } ```

Running this test will show that foo is leaked when the allocation of bar fails. The simplest fix, in this case, would be to use defer like so:

```zig fn testImpl(allocator: std.mem.Allocator, length: usize) !void { var foo = try allocator.alloc(u8, length); defer allocator.free(foo); var bar = try allocator.alloc(u8, length); defer allocator.free(bar); } ```

pub fn checkAllAllocationFailures(backing_allocator: std.mem.Allocator, comptime test_fn: anytype, extra_args: anytype) !void {
    switch (@typeInfo(@typeInfo(@TypeOf(test_fn)).Fn.return_type.?)) {
        .ErrorUnion => |info| {
            if (info.payload != void) {
                @compileError("Return type must be !void");
            }
        },
        else => @compileError("Return type must be !void"),
    }
    if (@typeInfo(@TypeOf(extra_args)) != .Struct) {
        @compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(extra_args)));
    }

    const ArgsTuple = std.meta.ArgsTuple(@TypeOf(test_fn));
    const fn_args_fields = @typeInfo(ArgsTuple).Struct.fields;
    if (fn_args_fields.len == 0 or fn_args_fields[0].type != std.mem.Allocator) {
        @compileError("The provided function must have an " ++ @typeName(std.mem.Allocator) ++ " as its first argument");
    }
    const expected_args_tuple_len = fn_args_fields.len - 1;
    if (extra_args.len != expected_args_tuple_len) {
        @compileError("The provided function expects " ++ std.fmt.comptimePrint("{d}", .{expected_args_tuple_len}) ++ " extra arguments, but the provided tuple contains " ++ std.fmt.comptimePrint("{d}", .{extra_args.len}));
    }

    // Setup the tuple that will actually be used with @call (we'll need to insert
    // the failing allocator in field @"0" before each @call)
    var args: ArgsTuple = undefined;
    inline for (@typeInfo(@TypeOf(extra_args)).Struct.fields, 0..) |field, i| {
        const arg_i_str = comptime str: {
            var str_buf: [100]u8 = undefined;
            const args_i = i + 1;
            const str_len = std.fmt.formatIntBuf(&str_buf, args_i, 10, .lower, .{});
            break :str str_buf[0..str_len];
        };
        @field(args, arg_i_str) = @field(extra_args, field.name);
    }

    // Try it once with unlimited memory, make sure it works
    const needed_alloc_count = x: {
        var failing_allocator_inst = std.testing.FailingAllocator.init(backing_allocator, .{});
        args.@"0" = failing_allocator_inst.allocator();

        try @call(.auto, test_fn, args);
        break :x failing_allocator_inst.alloc_index;
    };

    var fail_index: usize = 0;
    while (fail_index < needed_alloc_count) : (fail_index += 1) {
        var failing_allocator_inst = std.testing.FailingAllocator.init(backing_allocator, .{ .fail_index = fail_index });
        args.@"0" = failing_allocator_inst.allocator();

        if (@call(.auto, test_fn, args)) |_| {
            if (failing_allocator_inst.has_induced_failure) {
                return error.SwallowedOutOfMemoryError;
            } else {
                return error.NondeterministicMemoryUsage;
            }
        } else |err| switch (err) {
            error.OutOfMemory => {
                if (failing_allocator_inst.allocated_bytes != failing_allocator_inst.freed_bytes) {
                    print(
                        "\nfail_index: {d}/{d}\nallocated bytes: {d}\nfreed bytes: {d}\nallocations: {d}\ndeallocations: {d}\nallocation that was made to fail: {}",
                        .{
                            fail_index,
                            needed_alloc_count,
                            failing_allocator_inst.allocated_bytes,
                            failing_allocator_inst.freed_bytes,
                            failing_allocator_inst.allocations,
                            failing_allocator_inst.deallocations,
                            failing_allocator_inst.getStackTrace(),
                        },
                    );
                    return error.MemoryLeakDetected;
                }
            },
            else => return err,
        }
    }
}

refAllDecls()

Given a type, references all the declarations inside, so that the semantic analyzer sees them.

pub fn refAllDecls(comptime T: type) void {
    if (!builtin.is_test) return;
    inline for (comptime std.meta.declarations(T)) |decl| {
        _ = &@field(T, decl.name);
    }
}

refAllDeclsRecursive()

Given a type, recursively references all the declarations inside, so that the semantic analyzer sees them. For deep types, you may use @setEvalBranchQuota.

pub fn refAllDeclsRecursive(comptime T: type) void {
    if (!builtin.is_test) return;
    inline for (comptime std.meta.declarations(T)) |decl| {
        if (@TypeOf(@field(T, decl.name)) == type) {
            switch (@typeInfo(@field(T, decl.name))) {
                .Struct, .Enum, .Union, .Opaque => refAllDeclsRecursive(@field(T, decl.name)),
                else => {},
            }
        }
        _ = &@field(T, decl.name);
    }
}