zig/lib/std / http/Client.zig

Connecting and opening requests are threadsafe. Individual requests are not.


const std = @import("../std.zig");
const builtin = @import("builtin");
const testing = std.testing;
const http = std.http;
const mem = std.mem;
const net = std.net;
const Uri = std.Uri;
const Allocator = mem.Allocator;
const assert = std.debug.assert;

const Client = @This();
const proto = @import("protocol.zig");

disable_tls

pub const disable_tls = std.options.http_disable_tls;

allocator: Allocator,

ca_bundle: if (disable_tls) void else std.crypto.Certificate.Bundle = if (disable_tls) {} else .{},
ca_bundle_mutex: std.Thread.Mutex = .{},

next_https_rescan_certs: bool = true,

connection_pool: ConnectionPool = .{},

http_proxy: ?Proxy = null,

https_proxy: ?Proxy = null,

ConnectionPool

Allocator used for all allocations made by the client.

This allocator must be thread-safe. When this is true, the next time this client performs an HTTPS request, it will first rescan the system for root certificates. The pool of connections that can be reused (and currently in use). This is the proxy that will handle http:// connections. It *must not* be modified when the client has any active connections. This is the proxy that will handle https:// connections. It *must not* be modified when the client has any active connections. A set of linked lists of connections that can be reused.

pub const ConnectionPool = struct {
    pub const Criteria = struct {
        host: []const u8,
        port: u16,
        protocol: Connection.Protocol,
    };

    const Queue = std.DoublyLinkedList(Connection);
    pub const Node = Queue.Node;

    mutex: std.Thread.Mutex = .{},
    used: Queue = .{},
    free: Queue = .{},
    free_len: usize = 0,
    free_size: usize = 32,

findConnection()

The criteria for a connection to be considered a match. Open connections that are currently in use. Open connections that are not currently in use. Finds and acquires a connection from the connection pool matching the criteria. This function is threadsafe. If no connection is found, null is returned.

    pub fn findConnection(pool: *ConnectionPool, criteria: Criteria) ?*Connection {
        pool.mutex.lock();
        defer pool.mutex.unlock();

        var next = pool.free.last;
        while (next) |node| : (next = node.prev) {
            if (node.data.protocol != criteria.protocol) continue;
            if (node.data.port != criteria.port) continue;

            // Domain names are case-insensitive (RFC 5890, Section 2.3.2.4)
            if (!std.ascii.eqlIgnoreCase(node.data.host, criteria.host)) continue;

            pool.acquireUnsafe(node);
            return &node.data;
        }

        return null;
    }

acquireUnsafe()

Acquires an existing connection from the connection pool. This function is not threadsafe.

    pub fn acquireUnsafe(pool: *ConnectionPool, node: *Node) void {
        pool.free.remove(node);
        pool.free_len -= 1;

        pool.used.append(node);
    }

acquire()

Acquires an existing connection from the connection pool. This function is threadsafe.

    pub fn acquire(pool: *ConnectionPool, node: *Node) void {
        pool.mutex.lock();
        defer pool.mutex.unlock();

        return pool.acquireUnsafe(node);
    }

release()

Tries to release a connection back to the connection pool. This function is threadsafe. If the connection is marked as closing, it will be closed instead.

The allocator must be the owner of all nodes in this pool. The allocator must be the owner of all resources associated with the connection.

    pub fn release(pool: *ConnectionPool, allocator: Allocator, connection: *Connection) void {
        pool.mutex.lock();
        defer pool.mutex.unlock();

        const node = @fieldParentPtr(Node, "data", connection);

        pool.used.remove(node);

        if (node.data.closing or pool.free_size == 0) {
            node.data.close(allocator);
            return allocator.destroy(node);
        }

        if (pool.free_len >= pool.free_size) {
            const popped = pool.free.popFirst() orelse unreachable;
            pool.free_len -= 1;

            popped.data.close(allocator);
            allocator.destroy(popped);
        }

        if (node.data.proxied) {
            pool.free.prepend(node); // proxied connections go to the end of the queue, always try direct connections first
        } else {
            pool.free.append(node);
        }

        pool.free_len += 1;
    }

addUsed()

Adds a newly created node to the pool of used connections. This function is threadsafe.

    pub fn addUsed(pool: *ConnectionPool, node: *Node) void {
        pool.mutex.lock();
        defer pool.mutex.unlock();

        pool.used.append(node);
    }

resize()

Resizes the connection pool. This function is threadsafe.

If the new size is smaller than the current size, then idle connections will be closed until the pool is the new size.

    pub fn resize(pool: *ConnectionPool, allocator: Allocator, new_size: usize) void {
        pool.mutex.lock();
        defer pool.mutex.unlock();

        var next = pool.free.first;
        _ = next;
        while (pool.free_len > new_size) {
            const popped = pool.free.popFirst() orelse unreachable;
            pool.free_len -= 1;

            popped.data.close(allocator);
            allocator.destroy(popped);
        }

        pool.free_size = new_size;
    }

deinit()

    pub fn deinit(pool: *ConnectionPool, allocator: Allocator) void {
        pool.mutex.lock();

        var next = pool.free.first;
        while (next) |node| {
            defer allocator.destroy(node);
            next = node.next;

            node.data.close(allocator);
        }

        next = pool.used.first;
        while (next) |node| {
            defer allocator.destroy(node);
            next = node.next;

            node.data.close(allocator);
        }

        pool.* = undefined;
    }
};

Connection

An interface to either a plain or TLS connection.

pub const Connection = struct {
    pub const buffer_size = std.crypto.tls.max_ciphertext_record_len;
    const BufferSize = std.math.IntFittingRange(0, buffer_size);

    pub const Protocol = enum { plain, tls };

    stream: net.Stream,
    tls_client: if (!disable_tls) *std.crypto.tls.Client else void,

    protocol: Protocol,
    host: []u8,
    port: u16,

    proxied: bool = false,
    closing: bool = false,

    read_start: BufferSize = 0,
    read_end: BufferSize = 0,
    write_end: BufferSize = 0,
    read_buf: [buffer_size]u8 = undefined,
    write_buf: [buffer_size]u8 = undefined,

readvDirectTls()

undefined unless protocol is tls.

    pub fn readvDirectTls(conn: *Connection, buffers: []std.os.iovec) ReadError!usize {
        return conn.tls_client.readv(conn.stream, buffers) catch |err| {
            // https://github.com/ziglang/zig/issues/2473
            if (mem.startsWith(u8, @errorName(err), "TlsAlert")) return error.TlsAlert;

            switch (err) {
                error.TlsConnectionTruncated, error.TlsRecordOverflow, error.TlsDecodeError, error.TlsBadRecordMac, error.TlsBadLength, error.TlsIllegalParameter, error.TlsUnexpectedMessage => return error.TlsFailure,
                error.ConnectionTimedOut => return error.ConnectionTimedOut,
                error.ConnectionResetByPeer, error.BrokenPipe => return error.ConnectionResetByPeer,
                else => return error.UnexpectedReadFailure,
            }
        };
    }

readvDirect()

    pub fn readvDirect(conn: *Connection, buffers: []std.os.iovec) ReadError!usize {
        if (conn.protocol == .tls) {
            if (disable_tls) unreachable;

            return conn.readvDirectTls(buffers);
        }

        return conn.stream.readv(buffers) catch |err| switch (err) {
            error.ConnectionTimedOut => return error.ConnectionTimedOut,
            error.ConnectionResetByPeer, error.BrokenPipe => return error.ConnectionResetByPeer,
            else => return error.UnexpectedReadFailure,
        };
    }

fill()

    pub fn fill(conn: *Connection) ReadError!void {
        if (conn.read_end != conn.read_start) return;

        var iovecs = [1]std.os.iovec{
            .{ .iov_base = &conn.read_buf, .iov_len = conn.read_buf.len },
        };
        const nread = try conn.readvDirect(&iovecs);
        if (nread == 0) return error.EndOfStream;
        conn.read_start = 0;
        conn.read_end = @intCast(nread);
    }

peek()

    pub fn peek(conn: *Connection) []const u8 {
        return conn.read_buf[conn.read_start..conn.read_end];
    }

drop()

    pub fn drop(conn: *Connection, num: BufferSize) void {
        conn.read_start += num;
    }

read()

    pub fn read(conn: *Connection, buffer: []u8) ReadError!usize {
        const available_read = conn.read_end - conn.read_start;
        const available_buffer = buffer.len;

        if (available_read > available_buffer) { // partially read buffered data
            @memcpy(buffer[0..available_buffer], conn.read_buf[conn.read_start..conn.read_end][0..available_buffer]);
            conn.read_start += @intCast(available_buffer);

            return available_buffer;
        } else if (available_read > 0) { // fully read buffered data
            @memcpy(buffer[0..available_read], conn.read_buf[conn.read_start..conn.read_end]);
            conn.read_start += available_read;

            return available_read;
        }

        var iovecs = [2]std.os.iovec{
            .{ .iov_base = buffer.ptr, .iov_len = buffer.len },
            .{ .iov_base = &conn.read_buf, .iov_len = conn.read_buf.len },
        };
        const nread = try conn.readvDirect(&iovecs);

        if (nread > buffer.len) {
            conn.read_start = 0;
            conn.read_end = @intCast(nread - buffer.len);
            return buffer.len;
        }

        return nread;
    }

    pub const ReadError = error{
        TlsFailure,
        TlsAlert,
        ConnectionTimedOut,
        ConnectionResetByPeer,
        UnexpectedReadFailure,
        EndOfStream,
    };

    pub const Reader = std.io.Reader(*Connection, ReadError, read);

reader()

    pub fn reader(conn: *Connection) Reader {
        return Reader{ .context = conn };
    }

writeAllDirectTls()

    pub fn writeAllDirectTls(conn: *Connection, buffer: []const u8) WriteError!void {
        return conn.tls_client.writeAll(conn.stream, buffer) catch |err| switch (err) {
            error.BrokenPipe, error.ConnectionResetByPeer => return error.ConnectionResetByPeer,
            else => return error.UnexpectedWriteFailure,
        };
    }

writeAllDirect()

    pub fn writeAllDirect(conn: *Connection, buffer: []const u8) WriteError!void {
        if (conn.protocol == .tls) {
            if (disable_tls) unreachable;

            return conn.writeAllDirectTls(buffer);
        }

        return conn.stream.writeAll(buffer) catch |err| switch (err) {
            error.BrokenPipe, error.ConnectionResetByPeer => return error.ConnectionResetByPeer,
            else => return error.UnexpectedWriteFailure,
        };
    }

write()

    pub fn write(conn: *Connection, buffer: []const u8) WriteError!usize {
        if (conn.write_end + buffer.len > conn.write_buf.len) {
            try conn.flush();

            if (buffer.len > conn.write_buf.len) {
                try conn.writeAllDirect(buffer);
                return buffer.len;
            }
        }

        @memcpy(conn.write_buf[conn.write_end..][0..buffer.len], buffer);
        conn.write_end += @intCast(buffer.len);

        return buffer.len;
    }

flush()

    pub fn flush(conn: *Connection) WriteError!void {
        if (conn.write_end == 0) return;

        try conn.writeAllDirect(conn.write_buf[0..conn.write_end]);
        conn.write_end = 0;
    }

    pub const WriteError = error{
        ConnectionResetByPeer,
        UnexpectedWriteFailure,
    };

    pub const Writer = std.io.Writer(*Connection, WriteError, write);

writer()

    pub fn writer(conn: *Connection) Writer {
        return Writer{ .context = conn };
    }

close()

    pub fn close(conn: *Connection, allocator: Allocator) void {
        if (conn.protocol == .tls) {
            if (disable_tls) unreachable;

            // try to cleanly close the TLS connection, for any server that cares.
            _ = conn.tls_client.writeEnd(conn.stream, "", true) catch {};
            allocator.destroy(conn.tls_client);
        }

        conn.stream.close();
        allocator.free(conn.host);
    }
};

RequestTransfer

The mode of transport for requests.

pub const RequestTransfer = union(enum) {
    content_length: u64,
    chunked: void,
    none: void,
};

Compression

The decompressor for response messages.

pub const Compression = union(enum) {
    pub const DeflateDecompressor = std.compress.zlib.DecompressStream(Request.TransferReader);
    pub const GzipDecompressor = std.compress.gzip.Decompress(Request.TransferReader);
    pub const ZstdDecompressor = std.compress.zstd.DecompressStream(Request.TransferReader, .{});

    deflate: DeflateDecompressor,
    gzip: GzipDecompressor,
    zstd: ZstdDecompressor,
    none: void,
};

Response

A HTTP response originating from a server.

pub const Response = struct {
    pub const ParseError = Allocator.Error || error{
        HttpHeadersInvalid,
        HttpHeaderContinuationsUnsupported,
        HttpTransferEncodingUnsupported,
        HttpConnectionHeaderUnsupported,
        InvalidContentLength,
        CompressionNotSupported,
    };

parse()

    pub fn parse(res: *Response, bytes: []const u8, trailing: bool) ParseError!void {
        var it = mem.tokenizeAny(u8, bytes, "\r\n");

        const first_line = it.next() orelse return error.HttpHeadersInvalid;
        if (first_line.len < 12)
            return error.HttpHeadersInvalid;

        const version: http.Version = switch (int64(first_line[0..8])) {
            int64("HTTP/1.0") => .@"HTTP/1.0",
            int64("HTTP/1.1") => .@"HTTP/1.1",
            else => return error.HttpHeadersInvalid,
        };
        if (first_line[8] != ' ') return error.HttpHeadersInvalid;
        const status = @as(http.Status, @enumFromInt(parseInt3(first_line[9..12].*)));
        const reason = mem.trimLeft(u8, first_line[12..], " ");

        res.version = version;
        res.status = status;
        res.reason = reason;

        res.headers.clearRetainingCapacity();

        while (it.next()) |line| {
            if (line.len == 0) return error.HttpHeadersInvalid;
            switch (line[0]) {
                ' ', '\t' => return error.HttpHeaderContinuationsUnsupported,
                else => {},
            }

            var line_it = mem.tokenizeAny(u8, line, ": ");
            const header_name = line_it.next() orelse return error.HttpHeadersInvalid;
            const header_value = line_it.rest();

            try res.headers.append(header_name, header_value);

            if (trailing) continue;

            if (std.ascii.eqlIgnoreCase(header_name, "transfer-encoding")) {
                // Transfer-Encoding: second, first
                // Transfer-Encoding: deflate, chunked
                var iter = mem.splitBackwardsScalar(u8, header_value, ',');

                const first = iter.first();
                const trimmed_first = mem.trim(u8, first, " ");

                var next: ?[]const u8 = first;
                if (std.meta.stringToEnum(http.TransferEncoding, trimmed_first)) |transfer| {
                    if (res.transfer_encoding != .none) return error.HttpHeadersInvalid; // we already have a transfer encoding
                    res.transfer_encoding = transfer;

                    next = iter.next();
                }

                if (next) |second| {
                    const trimmed_second = mem.trim(u8, second, " ");

                    if (std.meta.stringToEnum(http.ContentEncoding, trimmed_second)) |transfer| {
                        if (res.transfer_compression != .identity) return error.HttpHeadersInvalid; // double compression is not supported
                        res.transfer_compression = transfer;
                    } else {
                        return error.HttpTransferEncodingUnsupported;
                    }
                }

                if (iter.next()) |_| return error.HttpTransferEncodingUnsupported;
            } else if (std.ascii.eqlIgnoreCase(header_name, "content-length")) {
                const content_length = std.fmt.parseInt(u64, header_value, 10) catch return error.InvalidContentLength;

                if (res.content_length != null and res.content_length != content_length) return error.HttpHeadersInvalid;

                res.content_length = content_length;
            } else if (std.ascii.eqlIgnoreCase(header_name, "content-encoding")) {
                if (res.transfer_compression != .identity) return error.HttpHeadersInvalid;

                const trimmed = mem.trim(u8, header_value, " ");

                if (std.meta.stringToEnum(http.ContentEncoding, trimmed)) |ce| {
                    res.transfer_compression = ce;
                } else {
                    return error.HttpTransferEncodingUnsupported;
                }
            }
        }
    }

    inline fn int64(array: *const [8]u8) u64 {
        return @as(u64, @bitCast(array.*));
    }

    fn parseInt3(nnn: @Vector(3, u8)) u10 {
        const zero: @Vector(3, u8) = .{ '0', '0', '0' };
        const mmm: @Vector(3, u10) = .{ 100, 10, 1 };
        return @reduce(.Add, @as(@Vector(3, u10), nnn -% zero) *% mmm);
    }

Test: parseInt3

    test parseInt3 {
        const expectEqual = testing.expectEqual;
        try expectEqual(@as(u10, 0), parseInt3("000".*));
        try expectEqual(@as(u10, 418), parseInt3("418".*));
        try expectEqual(@as(u10, 999), parseInt3("999".*));
    }

    version: http.Version,
    status: http.Status,
    reason: []const u8,

    content_length: ?u64 = null,

    transfer_encoding: http.TransferEncoding = .none,

    transfer_compression: http.ContentEncoding = .identity,

    headers: http.Headers,
    parser: proto.HeadersParser,
    compression: Compression = .none,

    skip: bool = false,
};

Request

If present, the number of bytes in the response body. If present, the transfer encoding of the response body, otherwise none. If present, the compression of the response body, otherwise identity (no compression). The headers received from the server. Whether the response body should be skipped. Any data read from the response body will be discarded. A HTTP request that has been sent.

Order of operations: open -> send[ -> write -> finish] -> wait -> read

pub const Request = struct {
    uri: Uri,
    client: *Client,
    connection: ?*Connection,

    method: http.Method,
    version: http.Version = .@"HTTP/1.1",
    headers: http.Headers,

    transfer_encoding: RequestTransfer = .none,

    redirects_left: u32,
    handle_redirects: bool,
    handle_continue: bool,

    response: Response,

    arena: std.heap.ArenaAllocator,

deinit()

is null when this connection is released The transfer encoding of the request body. Used as a allocator for resolving redirects locations. Frees all resources associated with the request.

    pub fn deinit(req: *Request) void {
        switch (req.response.compression) {
            .none => {},
            .deflate => |*deflate| deflate.deinit(),
            .gzip => |*gzip| gzip.deinit(),
            .zstd => |*zstd| zstd.deinit(),
        }

        req.headers.deinit();
        req.response.headers.deinit();

        if (req.response.parser.header_bytes_owned) {
            req.response.parser.header_bytes.deinit(req.client.allocator);
        }

        if (req.connection) |connection| {
            if (!req.response.parser.done) {
                // If the response wasn't fully read, then we need to close the connection.
                connection.closing = true;
            }
            req.client.connection_pool.release(req.client.allocator, connection);
        }

        req.arena.deinit();
        req.* = undefined;
    }

    // This function must deallocate all resources associated with the request, or keep those which will be used
    // This needs to be kept in sync with deinit and request
    fn redirect(req: *Request, uri: Uri) !void {
        assert(req.response.parser.done);

        switch (req.response.compression) {
            .none => {},
            .deflate => |*deflate| deflate.deinit(),
            .gzip => |*gzip| gzip.deinit(),
            .zstd => |*zstd| zstd.deinit(),
        }

        req.client.connection_pool.release(req.client.allocator, req.connection.?);
        req.connection = null;

        const protocol = protocol_map.get(uri.scheme) orelse return error.UnsupportedUrlScheme;

        const port: u16 = uri.port orelse switch (protocol) {
            .plain => 80,
            .tls => 443,
        };

        const host = uri.host orelse return error.UriMissingHost;

        req.uri = uri;
        req.connection = try req.client.connect(host, port, protocol);
        req.redirects_left -= 1;
        req.response.headers.clearRetainingCapacity();
        req.response.parser.reset();

        req.response = .{
            .status = undefined,
            .reason = undefined,
            .version = undefined,
            .headers = req.response.headers,
            .parser = req.response.parser,
        };
    }

    pub const SendError = Connection.WriteError || error{ InvalidContentLength, UnsupportedTransferEncoding };

    pub const SendOptions = struct {
        raw_uri: bool = false,
    };

send()

Specifies that the uri should be used as is. You guarantee that the uri is already escaped. Send the HTTP request headers to the server.

    pub fn send(req: *Request, options: SendOptions) SendError!void {
        if (!req.method.requestHasBody() and req.transfer_encoding != .none) return error.UnsupportedTransferEncoding;

        const w = req.connection.?.writer();

        try req.method.write(w);
        try w.writeByte(' ');

        if (req.method == .CONNECT) {
            try req.uri.writeToStream(.{ .authority = true }, w);
        } else {
            try req.uri.writeToStream(.{
                .scheme = req.connection.?.proxied,
                .authentication = req.connection.?.proxied,
                .authority = req.connection.?.proxied,
                .path = true,
                .query = true,
                .raw = options.raw_uri,
            }, w);
        }
        try w.writeByte(' ');
        try w.writeAll(@tagName(req.version));
        try w.writeAll("\r\n");

        if (!req.headers.contains("host")) {
            try w.writeAll("Host: ");
            try req.uri.writeToStream(.{ .authority = true }, w);
            try w.writeAll("\r\n");
        }

        if (!req.headers.contains("user-agent")) {
            try w.writeAll("User-Agent: zig/");
            try w.writeAll(builtin.zig_version_string);
            try w.writeAll(" (std.http)\r\n");
        }

        if (!req.headers.contains("connection")) {
            try w.writeAll("Connection: keep-alive\r\n");
        }

        if (!req.headers.contains("accept-encoding")) {
            try w.writeAll("Accept-Encoding: gzip, deflate, zstd\r\n");
        }

        if (!req.headers.contains("te")) {
            try w.writeAll("TE: gzip, deflate, trailers\r\n");
        }

        const has_transfer_encoding = req.headers.contains("transfer-encoding");
        const has_content_length = req.headers.contains("content-length");

        if (!has_transfer_encoding and !has_content_length) {
            switch (req.transfer_encoding) {
                .chunked => try w.writeAll("Transfer-Encoding: chunked\r\n"),
                .content_length => |content_length| try w.print("Content-Length: {d}\r\n", .{content_length}),
                .none => {},
            }
        } else {
            if (has_transfer_encoding) {
                const transfer_encoding = req.headers.getFirstValue("transfer-encoding").?;
                if (std.mem.eql(u8, transfer_encoding, "chunked")) {
                    req.transfer_encoding = .chunked;
                } else {
                    return error.UnsupportedTransferEncoding;
                }
            } else if (has_content_length) {
                const content_length = std.fmt.parseInt(u64, req.headers.getFirstValue("content-length").?, 10) catch return error.InvalidContentLength;

                req.transfer_encoding = .{ .content_length = content_length };
            } else {
                req.transfer_encoding = .none;
            }
        }

        for (req.headers.list.items) |entry| {
            if (entry.value.len == 0) continue;

            try w.writeAll(entry.name);
            try w.writeAll(": ");
            try w.writeAll(entry.value);
            try w.writeAll("\r\n");
        }

        if (req.connection.?.proxied) {
            const proxy_headers: ?http.Headers = switch (req.connection.?.protocol) {
                .plain => if (req.client.http_proxy) |proxy| proxy.headers else null,
                .tls => if (req.client.https_proxy) |proxy| proxy.headers else null,
            };

            if (proxy_headers) |headers| {
                for (headers.list.items) |entry| {
                    if (entry.value.len == 0) continue;

                    try w.writeAll(entry.name);
                    try w.writeAll(": ");
                    try w.writeAll(entry.value);
                    try w.writeAll("\r\n");
                }
            }
        }

        try w.writeAll("\r\n");

        try req.connection.?.flush();
    }

    const TransferReadError = Connection.ReadError || proto.HeadersParser.ReadError;

    const TransferReader = std.io.Reader(*Request, TransferReadError, transferRead);

    fn transferReader(req: *Request) TransferReader {
        return .{ .context = req };
    }

    fn transferRead(req: *Request, buf: []u8) TransferReadError!usize {
        if (req.response.parser.done) return 0;

        var index: usize = 0;
        while (index == 0) {
            const amt = try req.response.parser.read(req.connection.?, buf[index..], req.response.skip);
            if (amt == 0 and req.response.parser.done) break;
            index += amt;
        }

        return index;
    }

    pub const WaitError = RequestError || SendError || TransferReadError || proto.HeadersParser.CheckCompleteHeadError || Response.ParseError || Uri.ParseError || error{ TooManyHttpRedirects, RedirectRequiresResend, HttpRedirectMissingLocation, CompressionInitializationFailed, CompressionNotSupported };

wait()

Waits for a response from the server and parses any headers that are sent. This function will block until the final response is received.

If handle_redirects is true and the request has no payload, then this function will automatically follow redirects. If a request payload is present, then this function will error with error.RedirectRequiresResend.

Must be called after send and, if any data was written to the request body, then also after finish.

    pub fn wait(req: *Request) WaitError!void {
        while (true) { // handle redirects
            while (true) { // read headers
                try req.connection.?.fill();

                const nchecked = try req.response.parser.checkCompleteHead(req.client.allocator, req.connection.?.peek());
                req.connection.?.drop(@intCast(nchecked));

                if (req.response.parser.state.isContent()) break;
            }

            try req.response.parse(req.response.parser.header_bytes.items, false);

            if (req.response.status == .@"continue") {
                req.response.parser.done = true; // we're done parsing the continue response, reset to prepare for the real response
                req.response.parser.reset();

                if (req.handle_continue)
                    continue;

                break;
            }

            // we're switching protocols, so this connection is no longer doing http
            if (req.response.status == .switching_protocols or (req.method == .CONNECT and req.response.status == .ok)) {
                req.connection.?.closing = false;
                req.response.parser.done = true;
            }

            // we default to using keep-alive if not provided in the client if the server asks for it
            const req_connection = req.headers.getFirstValue("connection");
            const req_keepalive = req_connection != null and !std.ascii.eqlIgnoreCase("close", req_connection.?);

            const res_connection = req.response.headers.getFirstValue("connection");
            const res_keepalive = res_connection != null and !std.ascii.eqlIgnoreCase("close", res_connection.?);
            if (res_keepalive and (req_keepalive or req_connection == null)) {
                req.connection.?.closing = false;
            } else {
                req.connection.?.closing = true;
            }

            if (req.response.transfer_encoding != .none) {
                switch (req.response.transfer_encoding) {
                    .none => unreachable,
                    .chunked => {
                        req.response.parser.next_chunk_length = 0;
                        req.response.parser.state = .chunk_head_size;
                    },
                }
            } else if (req.response.content_length) |cl| {
                req.response.parser.next_chunk_length = cl;

                if (cl == 0) req.response.parser.done = true;
            } else {
                req.response.parser.done = true;
            }

            // HEAD requests have no body
            if (req.method == .HEAD) {
                req.response.parser.done = true;
            }

            if (req.response.status.class() == .redirect and req.handle_redirects) {
                req.response.skip = true;

                // skip the body of the redirect response, this will at least leave the connection in a known good state.
                const empty = @as([*]u8, undefined)[0..0];
                assert(try req.transferRead(empty) == 0); // we're skipping, no buffer is necessary

                if (req.redirects_left == 0) return error.TooManyHttpRedirects;

                const location = req.response.headers.getFirstValue("location") orelse
                    return error.HttpRedirectMissingLocation;

                const arena = req.arena.allocator();

                const location_duped = try arena.dupe(u8, location);

                const new_url = Uri.parse(location_duped) catch try Uri.parseWithoutScheme(location_duped);
                const resolved_url = try req.uri.resolve(new_url, false, arena);

                // is the redirect location on the same domain, or a subdomain of the original request?
                const is_same_domain_or_subdomain = std.ascii.endsWithIgnoreCase(resolved_url.host.?, req.uri.host.?) and (resolved_url.host.?.len == req.uri.host.?.len or resolved_url.host.?[resolved_url.host.?.len - req.uri.host.?.len - 1] == '.');

                if (resolved_url.host == null or !is_same_domain_or_subdomain or !std.ascii.eqlIgnoreCase(resolved_url.scheme, req.uri.scheme)) {
                    // we're redirecting to a different domain, strip privileged headers like cookies
                    _ = req.headers.delete("authorization");
                    _ = req.headers.delete("www-authenticate");
                    _ = req.headers.delete("cookie");
                    _ = req.headers.delete("cookie2");
                }

                if (req.response.status == .see_other or ((req.response.status == .moved_permanently or req.response.status == .found) and req.method == .POST)) {
                    // we're redirecting to a GET, so we need to change the method and remove the body
                    req.method = .GET;
                    req.transfer_encoding = .none;
                    _ = req.headers.delete("transfer-encoding");
                    _ = req.headers.delete("content-length");
                    _ = req.headers.delete("content-type");
                }

                if (req.transfer_encoding != .none) {
                    return error.RedirectRequiresResend; // The request body has already been sent. The request is still in a valid state, but the redirect must be handled manually.
                }

                try req.redirect(resolved_url);

                try req.send(.{});
            } else {
                req.response.skip = false;
                if (!req.response.parser.done) {
                    switch (req.response.transfer_compression) {
                        .identity => req.response.compression = .none,
                        .compress, .@"x-compress" => return error.CompressionNotSupported,
                        .deflate => req.response.compression = .{
                            .deflate = std.compress.zlib.decompressStream(req.client.allocator, req.transferReader()) catch return error.CompressionInitializationFailed,
                        },
                        .gzip, .@"x-gzip" => req.response.compression = .{
                            .gzip = std.compress.gzip.decompress(req.client.allocator, req.transferReader()) catch return error.CompressionInitializationFailed,
                        },
                        .zstd => req.response.compression = .{
                            .zstd = std.compress.zstd.decompressStream(req.client.allocator, req.transferReader()),
                        },
                    }
                }

                break;
            }
        }
    }

    pub const ReadError = TransferReadError || proto.HeadersParser.CheckCompleteHeadError || error{ DecompressionFailure, InvalidTrailers };

    pub const Reader = std.io.Reader(*Request, ReadError, read);

reader()

    pub fn reader(req: *Request) Reader {
        return .{ .context = req };
    }

read()

Reads data from the response body. Must be called after wait.

    pub fn read(req: *Request, buffer: []u8) ReadError!usize {
        const out_index = switch (req.response.compression) {
            .deflate => |*deflate| deflate.read(buffer) catch return error.DecompressionFailure,
            .gzip => |*gzip| gzip.read(buffer) catch return error.DecompressionFailure,
            .zstd => |*zstd| zstd.read(buffer) catch return error.DecompressionFailure,
            else => try req.transferRead(buffer),
        };

        if (out_index == 0) {
            const has_trail = !req.response.parser.state.isContent();

            while (!req.response.parser.state.isContent()) { // read trailing headers
                try req.connection.?.fill();

                const nchecked = try req.response.parser.checkCompleteHead(req.client.allocator, req.connection.?.peek());
                req.connection.?.drop(@intCast(nchecked));
            }

            if (has_trail) {
                // The response headers before the trailers are already guaranteed to be valid, so they will always be parsed again and cannot return an error.
                // This will *only* fail for a malformed trailer.
                req.response.parse(req.response.parser.header_bytes.items, true) catch return error.InvalidTrailers;
            }
        }

        return out_index;
    }

readAll()

Reads data from the response body. Must be called after wait.

    pub fn readAll(req: *Request, buffer: []u8) !usize {
        var index: usize = 0;
        while (index < buffer.len) {
            const amt = try read(req, buffer[index..]);
            if (amt == 0) break;
            index += amt;
        }
        return index;
    }

    pub const WriteError = Connection.WriteError || error{ NotWriteable, MessageTooLong };

    pub const Writer = std.io.Writer(*Request, WriteError, write);

writer()

    pub fn writer(req: *Request) Writer {
        return .{ .context = req };
    }

write()

Write bytes to the server. The transfer_encoding field determines how data will be sent. Must be called after send and before finish.

    pub fn write(req: *Request, bytes: []const u8) WriteError!usize {
        switch (req.transfer_encoding) {
            .chunked => {
                try req.connection.?.writer().print("{x}\r\n", .{bytes.len});
                try req.connection.?.writer().writeAll(bytes);
                try req.connection.?.writer().writeAll("\r\n");

                return bytes.len;
            },
            .content_length => |*len| {
                if (len.* < bytes.len) return error.MessageTooLong;

                const amt = try req.connection.?.write(bytes);
                len.* -= amt;
                return amt;
            },
            .none => return error.NotWriteable,
        }
    }

writeAll()

Write bytes to the server. The transfer_encoding field determines how data will be sent. Must be called after send and before finish.

    pub fn writeAll(req: *Request, bytes: []const u8) WriteError!void {
        var index: usize = 0;
        while (index < bytes.len) {
            index += try write(req, bytes[index..]);
        }
    }

    pub const FinishError = WriteError || error{MessageNotCompleted};

finish()

Finish the body of a request. This notifies the server that you have no more data to send. Must be called after send.

    pub fn finish(req: *Request) FinishError!void {
        switch (req.transfer_encoding) {
            .chunked => try req.connection.?.writer().writeAll("0\r\n\r\n"),
            .content_length => |len| if (len != 0) return error.MessageNotCompleted,
            .none => {},
        }

        try req.connection.?.flush();
    }
};

Proxy

pub const Proxy = struct {
    allocator: Allocator,
    headers: http.Headers,

    protocol: Connection.Protocol,
    host: []const u8,
    port: u16,

    supports_connect: bool = true,
};

deinit()

Release all associated resources with the client.

All pending requests must be de-initialized and all active connections released before calling this function.

pub fn deinit(client: *Client) void {
    assert(client.connection_pool.used.first == null); // There are still active requests.

    client.connection_pool.deinit(client.allocator);

    if (client.http_proxy) |*proxy| {
        proxy.allocator.free(proxy.host);
        proxy.headers.deinit();
    }

    if (client.https_proxy) |*proxy| {
        proxy.allocator.free(proxy.host);
        proxy.headers.deinit();
    }

    if (!disable_tls)
        client.ca_bundle.deinit(client.allocator);

    client.* = undefined;
}

loadDefaultProxies()

Uses the *_proxy environment variable to set any unset proxies for the client. This function *must not* be called when the client has any active connections.

pub fn loadDefaultProxies(client: *Client) !void {
    // Prevent any new connections from being created.
    client.connection_pool.mutex.lock();
    defer client.connection_pool.mutex.unlock();

    assert(client.connection_pool.used.first == null); // There are still active requests.

    if (client.http_proxy == null) http: {
        const content: []const u8 = if (std.process.hasEnvVarConstant("http_proxy"))
            try std.process.getEnvVarOwned(client.allocator, "http_proxy")
        else if (std.process.hasEnvVarConstant("HTTP_PROXY"))
            try std.process.getEnvVarOwned(client.allocator, "HTTP_PROXY")
        else if (std.process.hasEnvVarConstant("all_proxy"))
            try std.process.getEnvVarOwned(client.allocator, "all_proxy")
        else if (std.process.hasEnvVarConstant("ALL_PROXY"))
            try std.process.getEnvVarOwned(client.allocator, "ALL_PROXY")
        else
            break :http;
        defer client.allocator.free(content);

        const uri = Uri.parse(content) catch
            Uri.parseWithoutScheme(content) catch
            break :http;

        const protocol = if (uri.scheme.len == 0)
            .plain // No scheme, assume http://
        else
            protocol_map.get(uri.scheme) orelse break :http; // Unknown scheme, ignore

        const host = if (uri.host) |host| try client.allocator.dupe(u8, host) else break :http; // Missing host, ignore
        client.http_proxy = .{
            .allocator = client.allocator,
            .headers = .{ .allocator = client.allocator },

            .protocol = protocol,
            .host = host,
            .port = uri.port orelse switch (protocol) {
                .plain => 80,
                .tls => 443,
            },
        };

        if (uri.user != null and uri.password != null) {
            const prefix = "Basic ";

            const unencoded = try std.fmt.allocPrint(client.allocator, "{s}:{s}", .{ uri.user.?, uri.password.? });
            defer client.allocator.free(unencoded);

            const buffer = try client.allocator.alloc(u8, std.base64.standard.Encoder.calcSize(unencoded.len) + prefix.len);
            defer client.allocator.free(buffer);

            const result = std.base64.standard.Encoder.encode(buffer[prefix.len..], unencoded);
            @memcpy(buffer[0..prefix.len], prefix);

            try client.http_proxy.?.headers.append("proxy-authorization", result);
        }
    }

    if (client.https_proxy == null) https: {
        const content: []const u8 = if (std.process.hasEnvVarConstant("https_proxy"))
            try std.process.getEnvVarOwned(client.allocator, "https_proxy")
        else if (std.process.hasEnvVarConstant("HTTPS_PROXY"))
            try std.process.getEnvVarOwned(client.allocator, "HTTPS_PROXY")
        else if (std.process.hasEnvVarConstant("all_proxy"))
            try std.process.getEnvVarOwned(client.allocator, "all_proxy")
        else if (std.process.hasEnvVarConstant("ALL_PROXY"))
            try std.process.getEnvVarOwned(client.allocator, "ALL_PROXY")
        else
            break :https;
        defer client.allocator.free(content);

        const uri = Uri.parse(content) catch
            Uri.parseWithoutScheme(content) catch
            break :https;

        const protocol = if (uri.scheme.len == 0)
            .plain // No scheme, assume http://
        else
            protocol_map.get(uri.scheme) orelse break :https; // Unknown scheme, ignore

        const host = if (uri.host) |host| try client.allocator.dupe(u8, host) else break :https; // Missing host, ignore
        client.https_proxy = .{
            .allocator = client.allocator,
            .headers = .{ .allocator = client.allocator },

            .protocol = protocol,
            .host = host,
            .port = uri.port orelse switch (protocol) {
                .plain => 80,
                .tls => 443,
            },
        };

        if (uri.user != null and uri.password != null) {
            const prefix = "Basic ";

            const unencoded = try std.fmt.allocPrint(client.allocator, "{s}:{s}", .{ uri.user.?, uri.password.? });
            defer client.allocator.free(unencoded);

            const buffer = try client.allocator.alloc(u8, std.base64.standard.Encoder.calcSize(unencoded.len) + prefix.len);
            defer client.allocator.free(buffer);

            const result = std.base64.standard.Encoder.encode(buffer[prefix.len..], unencoded);
            @memcpy(buffer[0..prefix.len], prefix);

            try client.https_proxy.?.headers.append("proxy-authorization", result);
        }
    }
}

ConnectTcpError

pub const ConnectTcpError = Allocator.Error || error{ ConnectionRefused, NetworkUnreachable, ConnectionTimedOut, ConnectionResetByPeer, TemporaryNameServerFailure, NameServerFailure, UnknownHostName, HostLacksNetworkAddresses, UnexpectedConnectFailure, TlsInitializationFailed };

connectTcp()

Connect to host:port using the specified protocol. This will reuse a connection if one is already open. This function is threadsafe.

pub fn connectTcp(client: *Client, host: []const u8, port: u16, protocol: Connection.Protocol) ConnectTcpError!*Connection {
    if (client.connection_pool.findConnection(.{
        .host = host,
        .port = port,
        .protocol = protocol,
    })) |node|
        return node;

    if (disable_tls and protocol == .tls)
        return error.TlsInitializationFailed;

    const conn = try client.allocator.create(ConnectionPool.Node);
    errdefer client.allocator.destroy(conn);
    conn.* = .{ .data = undefined };

    const stream = net.tcpConnectToHost(client.allocator, host, port) catch |err| switch (err) {
        error.ConnectionRefused => return error.ConnectionRefused,
        error.NetworkUnreachable => return error.NetworkUnreachable,
        error.ConnectionTimedOut => return error.ConnectionTimedOut,
        error.ConnectionResetByPeer => return error.ConnectionResetByPeer,
        error.TemporaryNameServerFailure => return error.TemporaryNameServerFailure,
        error.NameServerFailure => return error.NameServerFailure,
        error.UnknownHostName => return error.UnknownHostName,
        error.HostLacksNetworkAddresses => return error.HostLacksNetworkAddresses,
        else => return error.UnexpectedConnectFailure,
    };
    errdefer stream.close();

    conn.data = .{
        .stream = stream,
        .tls_client = undefined,

        .protocol = protocol,
        .host = try client.allocator.dupe(u8, host),
        .port = port,
    };
    errdefer client.allocator.free(conn.data.host);

    if (protocol == .tls) {
        if (disable_tls) unreachable;

        conn.data.tls_client = try client.allocator.create(std.crypto.tls.Client);
        errdefer client.allocator.destroy(conn.data.tls_client);

        conn.data.tls_client.* = std.crypto.tls.Client.init(stream, client.ca_bundle, host) catch return error.TlsInitializationFailed;
        // This is appropriate for HTTPS because the HTTP headers contain
        // the content length which is used to detect truncation attacks.
        conn.data.tls_client.allow_truncation_attacks = true;
    }

    client.connection_pool.addUsed(conn);

    return &conn.data;
}

ConnectUnixError

pub const ConnectUnixError = Allocator.Error || std.os.SocketError || error{ NameTooLong, Unsupported } || std.os.ConnectError;

connectUnix()

Connect to path as a unix domain socket. This will reuse a connection if one is already open. This function is threadsafe.

pub fn connectUnix(client: *Client, path: []const u8) ConnectUnixError!*Connection {
    if (!net.has_unix_sockets) return error.Unsupported;

    if (client.connection_pool.findConnection(.{
        .host = path,
        .port = 0,
        .protocol = .plain,
    })) |node|
        return node;

    const conn = try client.allocator.create(ConnectionPool.Node);
    errdefer client.allocator.destroy(conn);
    conn.* = .{ .data = undefined };

    const stream = try std.net.connectUnixSocket(path);
    errdefer stream.close();

    conn.data = .{
        .stream = stream,
        .tls_client = undefined,
        .protocol = .plain,

        .host = try client.allocator.dupe(u8, path),
        .port = 0,
    };
    errdefer client.allocator.free(conn.data.host);

    client.connection_pool.addUsed(conn);

    return &conn.data;
}

connectTunnel()

Connect to tunnel_host:tunnel_port using the specified proxy with HTTP CONNECT. This will reuse a connection if one is already open. This function is threadsafe.

pub fn connectTunnel(
    client: *Client,
    proxy: *Proxy,
    tunnel_host: []const u8,
    tunnel_port: u16,
) !*Connection {
    if (!proxy.supports_connect) return error.TunnelNotSupported;

    if (client.connection_pool.findConnection(.{
        .host = tunnel_host,
        .port = tunnel_port,
        .protocol = proxy.protocol,
    })) |node|
        return node;

    var maybe_valid = false;
    (tunnel: {
        const conn = try client.connectTcp(proxy.host, proxy.port, proxy.protocol);
        errdefer {
            conn.closing = true;
            client.connection_pool.release(client.allocator, conn);
        }

        const uri = Uri{
            .scheme = "http",
            .user = null,
            .password = null,
            .host = tunnel_host,
            .port = tunnel_port,
            .path = "",
            .query = null,
            .fragment = null,
        };

        // we can use a small buffer here because a CONNECT response should be very small
        var buffer: [8096]u8 = undefined;

        var req = client.open(.CONNECT, uri, proxy.headers, .{
            .handle_redirects = false,
            .connection = conn,
            .header_strategy = .{ .static = &buffer },
        }) catch |err| {
            std.log.debug("err {}", .{err});
            break :tunnel err;
        };
        defer req.deinit();

        req.send(.{ .raw_uri = true }) catch |err| break :tunnel err;
        req.wait() catch |err| break :tunnel err;

        if (req.response.status.class() == .server_error) {
            maybe_valid = true;
            break :tunnel error.ServerError;
        }

        if (req.response.status != .ok) break :tunnel error.ConnectionRefused;

        // this connection is now a tunnel, so we can't use it for anything else, it will only be released when the client is de-initialized.
        req.connection = null;

        client.allocator.free(conn.host);
        conn.host = try client.allocator.dupe(u8, tunnel_host);
        errdefer client.allocator.free(conn.host);

        conn.port = tunnel_port;
        conn.closing = false;

        return conn;
    }) catch {
        // something went wrong with the tunnel
        proxy.supports_connect = maybe_valid;
        return error.TunnelNotSupported;
    };
}

// Prevents a dependency loop in open()
const ConnectErrorPartial = ConnectTcpError || error{ UnsupportedUrlScheme, ConnectionRefused };

ConnectError

pub const ConnectError = ConnectErrorPartial || RequestError;

connect()

Connect to host:port using the specified protocol. This will reuse a connection if one is already open.

If a proxy is configured for the client, then the proxy will be used to connect to the host.

This function is threadsafe.

pub fn connect(client: *Client, host: []const u8, port: u16, protocol: Connection.Protocol) ConnectError!*Connection {
    // pointer required so that `supports_connect` can be updated if a CONNECT fails
    const potential_proxy: ?*Proxy = switch (protocol) {
        .plain => if (client.http_proxy) |*proxy_info| proxy_info else null,
        .tls => if (client.https_proxy) |*proxy_info| proxy_info else null,
    };

    if (potential_proxy) |proxy| {
        // don't attempt to proxy the proxy thru itself.
        if (std.mem.eql(u8, proxy.host, host) and proxy.port == port and proxy.protocol == protocol) {
            return client.connectTcp(host, port, protocol);
        }

        if (proxy.supports_connect) tunnel: {
            return connectTunnel(client, proxy, host, port) catch |err| switch (err) {
                error.TunnelNotSupported => break :tunnel,
                else => |e| return e,
            };
        }

        // fall back to using the proxy as a normal http proxy
        const conn = try client.connectTcp(proxy.host, proxy.port, proxy.protocol);
        errdefer {
            conn.closing = true;
            client.connection_pool.release(conn);
        }

        conn.proxied = true;
        return conn;
    }

    return client.connectTcp(host, port, protocol);
}

RequestError

pub const RequestError = ConnectTcpError || ConnectErrorPartial || Request.SendError || std.fmt.ParseIntError || Connection.WriteError || error{
    UnsupportedUrlScheme,
    UriMissingHost,

    CertificateBundleLoadFailure,
    UnsupportedTransferEncoding,
};

RequestOptions

pub const RequestOptions = struct {
    version: http.Version = .@"HTTP/1.1",

    handle_continue: bool = true,

    handle_redirects: bool = true,
    max_redirects: u32 = 3,
    header_strategy: StorageStrategy = .{ .dynamic = 16 * 1024 },

    connection: ?*Connection = null,

    pub const StorageStrategy = union(enum) {
        dynamic: usize,
        static: []u8,
    };
};

protocol_map

Automatically ignore 100 Continue responses. This assumes you don't care, and will have sent the body before you wait for the response.

If this is not the case AND you know the server will send a 100 Continue, set this to false and wait for a response before sending the body. If you wait AND the server does not send a 100 Continue before you finish the request, then the request *will* deadlock. Must be an already acquired connection. In this case, the client's Allocator will be used to store the entire HTTP header. This value is the maximum total size of HTTP headers allowed, otherwise error.HttpHeadersExceededSizeLimit is returned from read(). This is used to store the entire HTTP header. If the HTTP header is too big to fit, error.HttpHeadersExceededSizeLimit is returned from read(). When this is used, error.OutOfMemory cannot be returned from read().

pub const protocol_map = std.ComptimeStringMap(Connection.Protocol, .{
    .{ "http", .plain },
    .{ "ws", .plain },
    .{ "https", .tls },
    .{ "wss", .tls },
});

open()

Open a connection to the host specified by uri and prepare to send a HTTP request.

uri must remain alive during the entire request. headers is cloned and may be freed after this function returns.

The caller is responsible for calling deinit() on the Request. This function is threadsafe.

pub fn open(client: *Client, method: http.Method, uri: Uri, headers: http.Headers, options: RequestOptions) RequestError!Request {
    const protocol = protocol_map.get(uri.scheme) orelse return error.UnsupportedUrlScheme;

    const port: u16 = uri.port orelse switch (protocol) {
        .plain => 80,
        .tls => 443,
    };

    const host = uri.host orelse return error.UriMissingHost;

    if (protocol == .tls and @atomicLoad(bool, &client.next_https_rescan_certs, .Acquire)) {
        if (disable_tls) unreachable;

        client.ca_bundle_mutex.lock();
        defer client.ca_bundle_mutex.unlock();

        if (client.next_https_rescan_certs) {
            client.ca_bundle.rescan(client.allocator) catch return error.CertificateBundleLoadFailure;
            @atomicStore(bool, &client.next_https_rescan_certs, false, .Release);
        }
    }

    const conn = options.connection orelse try client.connect(host, port, protocol);

    var req: Request = .{
        .uri = uri,
        .client = client,
        .connection = conn,
        .headers = try headers.clone(client.allocator), // Headers must be cloned to properly handle header transformations in redirects.
        .method = method,
        .version = options.version,
        .redirects_left = options.max_redirects,
        .handle_redirects = options.handle_redirects,
        .handle_continue = options.handle_continue,
        .response = .{
            .status = undefined,
            .reason = undefined,
            .version = undefined,
            .headers = http.Headers{ .allocator = client.allocator, .owned = false },
            .parser = switch (options.header_strategy) {
                .dynamic => |max| proto.HeadersParser.initDynamic(max),
                .static => |buf| proto.HeadersParser.initStatic(buf),
            },
        },
        .arena = undefined,
    };
    errdefer req.deinit();

    req.arena = std.heap.ArenaAllocator.init(client.allocator);

    return req;
}

FetchOptions

pub const FetchOptions = struct {
    pub const Location = union(enum) {
        url: []const u8,
        uri: Uri,
    };

    pub const Payload = union(enum) {
        string: []const u8,
        file: std.fs.File,
        none,
    };

    pub const ResponseStrategy = union(enum) {
        storage: RequestOptions.StorageStrategy,
        file: std.fs.File,
        none,
    };

    header_strategy: RequestOptions.StorageStrategy = .{ .dynamic = 16 * 1024 },
    response_strategy: ResponseStrategy = .{ .storage = .{ .dynamic = 16 * 1024 * 1024 } },

    location: Location,
    method: http.Method = .GET,
    headers: http.Headers = http.Headers{ .allocator = std.heap.page_allocator, .owned = false },
    payload: Payload = .none,
    raw_uri: bool = false,
};

FetchResult

pub const FetchResult = struct {
    status: http.Status,
    body: ?[]const u8 = null,
    headers: http.Headers,

    allocator: Allocator,
    options: FetchOptions,

deinit()

    pub fn deinit(res: *FetchResult) void {
        if (res.options.response_strategy == .storage and res.options.response_strategy.storage == .dynamic) {
            if (res.body) |body| res.allocator.free(body);
        }

        res.headers.deinit();
    }
};

fetch()

Perform a one-shot HTTP request with the provided options.

This function is threadsafe.

pub fn fetch(client: *Client, allocator: Allocator, options: FetchOptions) !FetchResult {
    const has_transfer_encoding = options.headers.contains("transfer-encoding");
    const has_content_length = options.headers.contains("content-length");

    if (has_content_length or has_transfer_encoding) return error.UnsupportedHeader;

    const uri = switch (options.location) {
        .url => |u| try Uri.parse(u),
        .uri => |u| u,
    };

    var req = try open(client, options.method, uri, options.headers, .{
        .header_strategy = options.header_strategy,
        .handle_redirects = options.payload == .none,
    });
    defer req.deinit();

    { // Block to maintain lock of file to attempt to prevent a race condition where another process modifies the file while we are reading it.
        // This relies on other processes actually obeying the advisory lock, which is not guaranteed.
        if (options.payload == .file) try options.payload.file.lock(.shared);
        defer if (options.payload == .file) options.payload.file.unlock();

        switch (options.payload) {
            .string => |str| req.transfer_encoding = .{ .content_length = str.len },
            .file => |file| req.transfer_encoding = .{ .content_length = (try file.stat()).size },
            .none => {},
        }

        try req.send(.{ .raw_uri = options.raw_uri });

        switch (options.payload) {
            .string => |str| try req.writeAll(str),
            .file => |file| {
                try file.seekTo(0);
                var fifo = std.fifo.LinearFifo(u8, .{ .Static = 8192 }).init();
                try fifo.pump(file.reader(), req.writer());
            },
            .none => {},
        }

        try req.finish();
    }

    try req.wait();

    var res = FetchResult{
        .status = req.response.status,
        .headers = try req.response.headers.clone(allocator),

        .allocator = allocator,
        .options = options,
    };

    switch (options.response_strategy) {
        .storage => |storage| switch (storage) {
            .dynamic => |max| res.body = try req.reader().readAllAlloc(allocator, max),
            .static => |buf| res.body = buf[0..try req.reader().readAll(buf)],
        },
        .file => |file| {
            var fifo = std.fifo.LinearFifo(u8, .{ .Static = 8192 }).init();
            try fifo.pump(req.reader(), file.writer());
        },
        .none => { // Take advantage of request internals to discard the response body and make the connection available for another request.
            req.response.skip = true;

            const empty = @as([*]u8, undefined)[0..0];
            assert(try req.transferRead(empty) == 0); // we're skipping, no buffer is necessary
        },
    }

    return res;
}

test {
    const native_endian = comptime builtin.cpu.arch.endian();
    if (builtin.zig_backend == .stage2_llvm and native_endian == .big) {
        // https://github.com/ziglang/zig/issues/13782
        return error.SkipZigTest;
    }

    if (builtin.os.tag == .wasi) return error.SkipZigTest;

    if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;

    std.testing.refAllDecls(@This());
}